新型超导体材料 ${ m MgB}_2$ 的电子结构随压强的变化关系

吕玉鹏 ,黄桂芹

(南京师范大学物理科学与技术学院 南京 210097)

[摘要] 根据密度泛函理论运用全势能线性 muffin-tin 轨道(FP-LMTO: full-potential linear-muffin -tin-orbital)方法 计算了不同压强下 MgB_2 晶格常数发生变化时的电子结构的变化情况 得出态密度的倒数与临界温度的自然对数成线性关系 符合 BCS 理论 从而进一步证实了 MgB_2 的超导机制为电—声子耦合 BCS 机制.

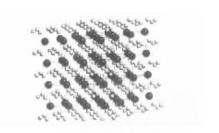
[关键词] 超导体 MgB2 电子结构 压强 :BCS 理论

[中图分类号]TM26;[文献标识码]A;[文章编号]1001-4616(2001)04-0053-04

0 引言

最近发现的新型超导体材料 MgB_2 的超导临界温度为 $39 \, {\rm K}^{-1}$ 超过了由 BCS 理论给出的金属化合物临界温度的上限.这是除了氧化物超导体、搀杂 C_{60} 固体材料超导体外,迄今为止超导温度最高的材料. MgB_2 的结构是一种类石墨夹层结构,其化学成分及晶体结构都很简单,且质量较轻,可以提高在 BCS 理论中标度临界温度尺寸的声子频率,有望成为很好的超导器件及大规模应用的超导材料.

大量理论研究 $^{2-5}$ 表明在 6 、 的超导性中起主导作用的是硼而不是镁的金属性 . 对硼临界温度的同位素效应 6 、 隧道效应 7 、 热力学属性 $^{8-10}$ 的研究发现 6 、 限道效应 7 、 热力学属性 $^{8-10}$ 的研究发现 6 、 8 。 世表明 6 。 他 表明 6 的超导机制是一种以声子为媒介的强耦合 10 电—声子机制 ,但 6 11 通过高分辨的光散射研究 发现 6 11 通过高分辨的光散射研究 发现 6 12 是一种弱耦合 6 11 的 6 的临界温度和外界压强之间的函数关系 12 ,发现临界温度在 8 6 $^$


本文根据密度泛函理论运用全势能线性 muffin-tin 轨道法计算了在不同压强下 MgB_2 晶格常数发生变化时电子结构的变化情况 进一步证实了 MgB_2 中超导机制为电—声子耦合 BCS 机制.

1 理论方法

本文采用全势能线性 muffin-tin 轨道方法来研究 MgB_2 的能带和电子结构 ,用 Stuttgart 基于平面波函数的 PLW 程序包进行模拟计算.全势能线性 muffin-tin 轨道组合法是建立在密度泛函

收稿日期 2001-06-19

深色大圆点代表镁原子 浅色小圆点代表硼原子

图 1 MgB₂ 的平面结构图

图 2 MgB₂ 的立体结构图

理论基础上的 ,基函数是由 muffin-tin 势所决定的 muffin-tin 轨道波函数 13]的线形组合. 在 muffin-tin 近似下 ,多原子体系在空间上分为两个区域:一个区域是以各原子核为球心的原子球 ,即 muffin-tin 球 ,计算中 muffin-tin 球是互不重迭的 ;其余区域为间隙区 . Muffin-tin 球内的势和电荷密度由球谐函数展开 ,间隙区的势和电荷密度由平面波展开 ,平面波的截断半径为:205 . 900 5 Ry ,采用了 9420 个平面波函数 . 价带由三个 K 的 Spd LMTO 基组表示 ,镁的 Spd S

2 结果分析

计算中通过改变 $M_{\rm gB_2}$ 晶格常数 a、c/a , _ 模拟外界对晶格的加压过程 . 由于 $M_{\rm gB_2}$ 的结 _ 构特点是在 c 轴方向上比较疏松 ,而在 a、b 轴方向上比较致密 ,有实验数据表明 ,在室温 附近 ,沿 c 轴方向 $M_{\rm gB_2}$ 的扩展性大约是沿 a 轴方向上的两倍以上 ,所以为了得到模拟加压的真实效果 ,我们根据实验数据在 c 轴方向上以约 0.05 a. u 的步长和在 a、b 方向上以 _ 0.001 a. u 的步长进行加压 . 结果见表 1 .

图 3 MgB, 压强—态密度关系图

表 1 MgB, 晶格常数、压强和态密度对照表

a/(a.u) 14]	c/a	压强/GPa	态密度/(States/eV)
5.83360	1.14193	0.00	9.731804
5.82279	1.14080	1.17	9.694288
5.80638	1.13990	2.14	9.641431
5.79806	1.13829	3.05	9.617416
5.79126	1.13744	4.07	9.597551
5.77424	1.13749	5.09	9.545 872
5.76523	1.13495	6.53	9.523462
5.76279	1.13495	8.02	9.516151

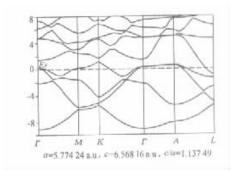


图 4 MgB, 能带图

根据表 1 我们做出压强—态密度关系图(如图 3). 由图可以看出当压强升高时 .态密度 N (E_F)呈下降趋势 $.\ln p$ 与 $\frac{1}{N(E_F)}$ 近似地成线性正比关系.

由 BCS 公式:

$$K_B T_C = \hbar \omega e^{-\frac{1}{N(E_F)V}}$$
,

可知临界温度 T_C 应正比于 $e^{-\frac{1}{M(E_F)V}}$,V 为电—声子耦合强度 ,一般而言 ,V 随晶格常数变化不大 ,所以 $\ln T_C \propto [c-\frac{1}{N(E_F)}]$,c 为常数. 而我们采用的数据是在实验中证实的 ,并且临界温度 T_C 在 8 GPa 下以 -1.6 K/GPa 的速率线性变化的 ,这样我们就得出临界温度与态密度的关系是 $\ln T_C \propto [-\frac{1}{N(E_F)}]$,与 BCS 公式给出的两者之间关系相同 ,从而进一步验证了 $M_{\rm gB_2}$ 是一种超导机制为电—声子耦合 BCS 机制的超导体材料.

从表 1 我们还看到随着晶格常数的减小,特别是 c 轴方向上的晶格长度的减小,态密度也随着减小,它是影响临界温度的一个重要因素,所以晶格常数的变化对临界温度有着相当大的影响,这与 Slusky 等人[15]的研究结果一致.

 MgB_2 的能带图如图 4 所示,能带结构中的高对称点取为 Γ = (0.0 ,0.0 ,0.0),M = (0.0 ,0.577 35 ,0.0),K = (3.0 ,0.0 ,0.0),A = (0.0 ,0.0 ,0.5),L = (0.0 ,0.577 35 ,0.5). 由图可以看出,在费米能级附近,带 σ 是未满态,显示了其金属性. 在与石墨能带结构 σ 的比较中,我们发现它们典型的不同之处在于:在布里渊区的 Γ — Λ 区域周围,石墨的带 σ 为满带,提供了强的共价键作用,而在 MgB_2 中,带 σ 是未满态,因此提高了它的金属性,在 σ 带相应的就有了更多的电子载流体,这些电子载流体体现了 MgB_2 的金属性.

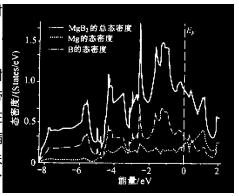


图 5 MgB, 态密度图

费米能级附近 M_gB_2 的态密度如图 5 所示 ,在 M_gB_2 中 ,两个硼的总态密度要比镁的态密度高很多 ,这说明 M_gB_2 的态密度主要是由硼的态密度所决定 ,在 M_gB_2 的超导性中是硼的金属性起了主导作用.

3 结论

带 σ 与费米能级交叉 ,显未满态 ,导致了 MgB_2 导电性的出现 ,并且硼的金属性在 MgB_2 超导性中占了主导地位 .通过改变 MgB_2 的晶格常数和 c/a 比值 ,模拟外界压强的变化 ,得出态密度的倒数与临界温度的自然对数成线性正比关系 ,符合 BCS 公式的结论 ,从而进一步验证了 MgB_2 的超导机制是 BCS 机制 .

「参考文献]

[1] Nagamatsu Jun Nakagawa Norimasa Muranaka Takahiro ,et al. Superconductivity at 39 K in magnesium diboride J. Nature 2001 A10 63—64.

万方数据

- [2] Kortus J, Mazin II, Belashchenko KD, et al. Superconductivity of metallic boron in MgB₂[DB/OL]. http://xxx.lanl.gov/abs/cond-mat?0101446 2001 01 30.
- [3] Belashchenko K D Schilfgaarde M van Antropov V P. Nature of bonding and electronic structure in MgB₂ ,a boron intercalation superconductor [DB/OL]. http://xxx.lanl.gov/abs/cond-mat?0102290 2001 02 15.
- [4] Satta G, Profeta G, Bernardini F. Electronic and structural properties of superconducting diborides and calcium disilicide in the AlB, structure [DB/OL]. http://xxx.lanl.gov/abs/cond-mat?0102358 2001 02 20.
- [5] An J M Pickett W E. Superconductivity of MgB₂: Covalent Bonds Driven Metallic [DB/OL]. http://xxx.lanl.gov/abs/cond-mat?0102391_2001 02 22.
- [6] Bud 'ko S L ,Lapertot G ,Petrovic C ,et al . Boron Isotope Effect in Superconducting MgB₂[J]. Physical Review Letter , 2001 &6:1877—1880.
- [7] Sharoni Amos ,Felner Israel ,Millo Oded. Tunneling spectroscopy measurement of the superconductor gap parameter of MgB[DB/OL]. http://xxx.lanl.gov/abs/cond-mat?0102325 ,2001 02 19.
- [8] Finnemore D K Ostenson J E Bud 'ko S L et al. Thermodynamic and Transport Properties of Superconducting MgB₂ [J]. Physical Review Letter 2001 &6 2420—2422.
- [9] Kremer R 'K Gibson B J Ahn K. Heat Capacity of MgB₂: Evidence for Moderately Strong Coupling Behavior [DB/OL]. http://xxx.lanl.gov/abs/cond-mat?0102423 2001 02 23.
- [10] Wälti Ch ,Felder E ,Degen C ,et al . Strong Electron-Phonon Coupling in Superconducting MgB₂: A Specific Heat Study [DB/OL]. http://xxx.lanl.gov/abs/cond-mat?0102522 2001 02 28.
- [11] Takahashi T Sato T Souma S ,et al . High-Resolution Photoemission Study of MgB DB/OL]. http://xxx.lanl.gov/abs/cond-mat?0103079 2001 03 03.
- [12] Lorenz B ,Meng R L ,Chu C W. High Pressure Study on MgB₂[DB/OL]. http://xxx.lanl.gov/abs/cond-mat? 0102264 2001 02 15.
- [13] Springborg M ,Anderson O K. Method for calculating the electronic structure of large molecules [J]. J Chem Phys , 1987 ,87 ,7125—7145
- [14] Vogt T Schneider G Hriljac J A ,et al. Compressibility and Electronic Structure of MgB₂ up to 8 GPa [DB/OL]. http://xxx.lanl.gov/abs/cond-mat?0102480 2001 02 27.
- [15] Slusky J S ,Rogado N ,Regan K A ,et al. Loss of superconductivity and structural transition in Mg_{1-x} Al_xB₂[DB/OL]. http://xxx.lanl.gov/abs/cond-mat?0102262_2001 01 14.

Relation Between Electronic Structure and Pressure of MgB₂

Lu Yupeng ,Huang Guiqin

(School of Physical Science and Technology ,Nanjing Normal University ,Nanjing 210097 ,PRC)

Abstract: The change of electronic structure in MgB_2 was calculated with different pressure using the method FP-LMTO (full-potential linear-muffin-tin-orbital) based on Density Functional Theory. And the conclusion that the relation between the superconductivity temperature of MgB_2 and density of states satisfies BCS theory was drawn so the mechanism of MgB_2 is BCS mechanism.

Key words :MgB₂ ;electronic structure ;pressure ;BCS theory

「责任编辑:丁蓉]