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Existence of Explosive Nonnegative Solutions for
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Abstract: In this paper, the necessary and sufficient conditions of the existence of nonnegative solutions for the two point
boundary value problem
(@, () = M(u(x)); 0<x< ]
lim w(x) = % = lim «lx),
0" -l
is established, where A >0 is a parameter and f is a smooth function.
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Here we consider the two point boundary value problem
-(P,(u)) = M(ulx)), 0<x<l (1)

lirr} u(x) = © = lim u(x), (2)

0 =1
where A >0 is a positive parameter and /" is a smooth function, and @, (u) = lul "y, p>1.
Explosive solutions of the problem
-Au(x) = f(u(x)),x€EN (3)
ulog=ow, 4
where (2 is bounded domain in R* (N =1) have been extensively studied, see [3 - 9]. For general nonlinearities
f(u) and in one space dimension, very recently, Anuradha et al'"" and Wang Shin-Hwa'?' considered problem (3) ~
(4). In this paper, we proved the existence of explosive nonnegative solutions to (1) ~ (2) basing on building a
quadrature method, the extends and complement part results of [1-2].
First, define

F(s) =j;f<z>dz,

and
I=1{s€ R U I{0l: f(5) <O0and F(s) > Flu)Yu > si.
Suppose that © is a nonnegative solution of Problem (1) ~ (2). Let

= min .
e Je<0,1)u(x)

Now we shall prove that u is symmetric to x = 1/2. Let u be a positive solution of (1) ~ (2). Then u has only
one minimum point in (0,1) (there is no local maximum point of u in (0,1)) and u is the unique solution of the
problem

v = )(7/)

Tp-Dio1?
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v() = v, o' () = u'(0),
in[¢,&), ¢is given arbitrary constant and &, is the minimum point of u by the standard ordinary differential equation
theory (suppose u has two minimum points in (0,1), we can reach a contradiction by directly integrating (1). The
similar argument implies that there is no local maximum point of u in (0,1)). Let y =1 - for x€ (&,,1 - ¢] and

@(y)=u(1-x). Then @(y) satisfies the problem

i, =- TENIEA = in[¢,1- &)

() = vou' () = uw(e).
Thus, u(x) and #(y) satisfy the same initial value problem. Let 7 be the minimum point of &, then 7= &;. Since
u(x)=u(y)in (,&) and u,’ (&)= — a,’(1-4)) =0, then =1~ &,. This implies & =1/2 and u(x) = u
(1= x) for x€ (¢,1/2), from ¢ being arbitrary, therefore, u is symmetric to x = 1/2 and u’ <0 in (0,1/2) and u’
>0in (1/2,1).
That is, u(x) must achieve its minimum at x = 1/2. Multiplying (1) through by u’(x), we obtain
- (@,(u))u' (%) = M(u)u'(x)
which can be integrated yielding
~(p=-Diplu 1? = AF(u(x)) + C. (5)
If o =inf,eq.yu(x), then u(1/2) = p. Substituting x = 1/2 in (5), we have
C = - AF(u(1/2)) = - AF(p).
Thus
w(x) == (pAl(p - 1)) (F(p) = F(u))", ¥ x € (0,1/2) (6)
and by symmetry,
w(x) = (pAl(p - )" (F(p) - F(u))™,vx € (1/2,1).
Dividing through by ( F(p) - F(u))" and integrating (6) from O to x, we obtain

u(x)—du—* B —L "
Ju(o) (F(p) - F(u))' _—((p—l)) %, ¥ x € (0,1/2) (7)

Substituting x = 1/2 in (7), we see that G(p) must exist and A and p must satisfy

=" du oy
S = 20y = A ®)

In fact we have the following lemma.

Lemma 1 Given A >0 and f€ C', there exists a unique solution to (1) ~ (2) with inf,¢ o ) u(x) = o if and
only if G(p)=A"",pE€ 1.

By a modification of the method given in [1-2], we establish the following results.

Theorem 2 If there exists any solution to (1) ~ (2) for any A >0, then

. _ f(u) _
-}HESUP( (u Inln**-Inu lnln“'lnu"'lnu)”'l(lnln--'lnu)") =%
a1 "2 .
where n€N=1{1,2,---}.
Proof Assume that
. _ fQu) )
uli“ls“p( (u Inln***Iny Inln***Ing**Inw)?”" (lnln*--Inu )? *
el no2 0

Then 3 K >0, M, >0 such that

- flu) < K(u Inln***Inu Inln**Inu-+*Inw)* ' (Inln**+lnu)?), Yu>M,.
il ) M

So

- f(u) < K((ulnln*Ing Inln*-*Inw-+Inw)?" (Inln*-*Ing Inln***Ing-+-Inu
—— —_—

n-1 n-2 n-1 n-2

_6—_
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+ InlpInu + Inln-*Inz + -+ + Inz + 1) (Inln--1nuw)”
el 2 "

+ (z Inln-=Ing Inln-+lng+++Inu)”" (Inln---Inu)?*™"), for u > My > p.
— —— —_—

n-1 n-2 n

This implies that

fu " u
- F(u) = —f(w)dw:/(' —f(w)dw+J - flw)dw <
0 0 M.‘
- F(M,) + h(u Inln++1nx Inln*Inu--Inu)? (lnln Inu)?
n-1 n-2 n
- 5(/"[3 Inln---1nM; Inln---InM,-- lnM3)"(lnln ‘InM;)", for u > M.
p n-1 n-2 n
Let p€ I and
K, = F(p) - F(M;) - (K/p)(M; Inln>*InM; Inln---InM;-++In M;)? (Inln---In M, ),
el e .
then we obtain
F(p) - F(u) < K, + K/p(u Inln*"Iny lnln”'ln ~Inu)’ (ln]n ‘Inu)?. (9
e a0 .

Now, 3 M, > p such that

K/p(u Inln'*Inu Inln-*Inu - Inu )’ (nln-lnw)?” = K,, foru > M,. (10)
e nl2 p
For M = max{M,, M|, (9) and (10) imply
F(p) - F(u) < 2K/p(u Inln--*Inu Inlnlnu lnu)"(lnln ‘Inu)?, foru > M. (11)
. e w2 "
Without loss of generality, we may assume M >max{p,p! and obtain from Eq.(11) that
du / du
G _2(—1/1/”JM/2 1/“’}4-’—
(0) =2 = DIY| ey~ pCan = 20 = D] GGy - Ry

Bz(p»1>/,,(P1;1>|/pr du

w « Inln**Inu Inln*-*Inu-- lnu(lnln ‘lInu)
et e s

n-1 n-2 n

= 2("'”/"(L‘_ 1)”" Inln-*Inulj = =
K ._Vl—_‘ L

So, G(p) does not exist if
llmsup(—f(u)/(ulnln ‘Inu Inlp*+Inu - Inw)”" (Inln*-lnu)") = o

n- l n-2 n

and Theorem 2 follows from Lemma 1.

Theorem 3 Assume that there exists @ > p — 1 such that f(u) satisfies

hm;%lﬁ—) = o0, (]2)

then there exist solutions to problem (1) ~ (2) for some A >0.
To prove Theorem 3, we need a technical lemma.
Lemma 4 Let f satisfy Eq. (12) and p€ [p,, 0,1 C 1. Then there exists M >0 such that
F(p) - F(u) = Ku™', foru > M € Lo, el
Proof If f satisfies Eq.(12), it is easy to see that there exists a constant M, >0 such that
-flw) = u, foruz= M,

which implies

~ n a+] MI!HI
_F(u),—F(M,)+JMI—f(w)ds/ F(M)+a+1 P Yuz=M,.
Letting K,:—F(M,)—A +mf plplF(p) and Kz_ >0 we obtain
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F(p) - F(u) = K, + K,u™*' Vu;Ml,VpE[p,.,pZ]‘ (13)
Now, 3 M, >0 such that (K,/2)u**'= - K, , ¥ uz= M, which implies
K + Ku' = 12Ku ,Yu=M,. (14)

Letting M = max{ M, , M, | and K = 1/2K,, we have by (13) ~ (14) that
F(p) - F(u) = K", Yu=M,¥Yp € [p.p]
and the lemma is proved.
Proof of Theorem 3  Suppose that f satisfies Eq. (12), let o€ I. Since I is open, 3 p,,p, € I such that p
€(py,p2) and [p;, 021 C 1. Let K and M be as in Lemma 4. Note that
G(p) = 2((p - 1)/p)”"L (Flo) = FCa))™ _d‘}(u))l/p-
Converges if and only if

oo du
I e Sy < =0 <o <one

and

J” du <
u (F(p) - F(u))"

where we assume without loss of generality that M > p,. Now, [p,, 0, ] C [ implies L = inf,E[Pl,PZ]( -f(z))>0.
This combined with the mean value theorem implies
Flp) - F(u) == fz)(u-p) = L{u-p) Vu€lp,p]
Since p + 6 < p,, we have
JFH? du 1 J‘pn? du ﬁ(p—l)/p

o (Fo) = Fa)™ ST%), (w-p™ " 1" - <%
Also, using Lemma 4 we have
* du 1 (* du a-p+1 ©
. (F(p) —Fla)™ < K7 )y gleon = pKUpM(a—;Hl)Ip < ®.

Hence G(p) is well defined Y/ o€ I, and by Lemma 1 there exists a solution to (1) ~ (2) for A = [ G(p)]” given
and any p€ 1.
Example Consider the problem
{— (@,(u)) =-a

lirrl u(x) = © = lin}— u(x),

0 =1
where @ > p — 1 is a given constant. Since f(u) = — u® is decreasing for u >0 and f(0) =0. Note that F(u) = —
u*'/(a + 1) which implies

6o = 2((p - V)" (e + 1" ey,

Letting v = (u"*' = 0°*')"” we obtain
du _ p*dv
(u”' _ pa+1)1/p = (a + 1)(vp + pa+l)a/(a+l>
so that

(p=1)a + 1)y Jw p2dw
G =2 » .
(10) ( p ) 0 (a + 1)(Up + Pnnl)u/(oul)
Now, Letting v = 0***"?tan””0 we obtain
6(p) = 4 =

=2
P - a+
p(a " I)P-lpﬂ—l,ul )l/p , tan(ﬁ Z)/"ﬁ(secﬁ)y( l)de

a-p+1 p-1
= 4( p-1 )1/pp(p(a+l))F( p )
= (a + l)p—l a-p+1) a .
14 4 2I( )
a+ 1
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Letting
- 1 -1
réE—2r(
T T WAL S Vi
‘ pla + 1) 2I( a )
a+ 1

then, we have

M

@

Clo) =

Here M, is finite since f satisfies (12) for a > p — 1 and thus, G(p) is finite. From lim G(p) =0", lim G(p) =
= o0

©, and G(p) is strictly decreasing on (0, % ). These results imply that G is a bijective mapping from (0, %) onto
(0, ). Thus, given A >0 there exists a unique o >0 such that G(p) = 1"?. Since /= (0, ), G(p) is not de-
fined for p<0. Hence, by lemma 1, there is a unique nonnegative solution to (1) ~ (2) for each A >0. Hence, A
S
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