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0 Introduction

In 1974 1.Ekeland 1 put forward an variational principle
Theorem A  Ekeland variational principle . Let X be a complete metric space ¢ X—>RU + o =+
© he bounded from below and lower semi-continuous. If there exist € >0 and x € X such that
¢ x sirgf $+e
then there exists ¥ € X such that
¢ Yy = ¢ x
d x y <l
$z2>¢y —edyz VYi#y.
This variational principle had been applied to many fields including control theory optimal theory geometry in
Banach spaces and big area analysis etc 2 3
In paper 6  S.Park generalized Ekeland’ s variational principle to quasi complete metric space and he still
suppose that the function ¢ x is bounded from below on X . In this paper we weaken the condition that ¢ x is
bounded from below on X essentially which makes the area of suited functional enlarged.
We know that the classical general principle on ordered sets 4 can deduce Theorem A. In this paper we utilize
the generalized general principle on ordered sets 5 to prove the main result in this paper.
Lemma 1  generalized general principle on ordered sets 5 . Assume that X is a partial ordered set and a
Hausdorff topological space which satisfies
i Vx€EX yEXly=x is asequential closed set
n ifx,<x< <x,< then x, has a convergent subsequence
iii there exists ¢ X—R such that
x€X yEX x<y x2#£y > ¢ x <Py

Then X has maximal element.

1 Main Results

Theorem 1 Let X be a complete metric space. Suppose ¢ X—>RU + ® = + o« is lower semi-continuous
and bounded from below on each bounded set. If there exists x, € X such that

lim inf ¢7x

=0
d;rx0*>+wd X Xy =
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then Y e >0 ¢ has e-approximately minimal point i.e. Jx € X such that
b x >b x° —ed x x” Vaszx .

Proof From lim inf $

zlxxoaerd X Xy

=0 we have for all ¢ > 0 there exists M > 0 such that ¢ x >

_£
2

d x x, when d x x, =M. In addition ¢ is bounded from below on each bounded set then there exists (3

>0 such that ¢ x > — 8 when d x x, <M. Hence $ « >—%dxx0 -B VaxEX.
For x y& X define x <y provided
%dxys¢x+%dxxo—¢y+%dyxo

Step one to prove that’ <" defined above satisfies the three axioms of partial order.

i x<<xisobvious 1 fx<y y<z then
%dxyssﬁx +%dxx0 - ¢y+%dyx0
and

€ € €
Edyzs¢y+3dyx0—¢z+3dzxo

From the above two inequations we have

£
2

%dxzs%dxy+%dyzs¢fx +%dxx0—¢fz +5d z x,

i.e. x<z il ifx<<y y<a then as the process of ii  we have
€ €
2d Xy + 2d y x <0

which yields x = y.
Step two to prove that there exists a functional ¢y X— R such that
x€EX y€X x<y x#4¢y= ¢ x <¢ y .
Let x<y x5y then

£

€
0<?dxys¢x+2

dxx0—¢y+%dyx0

¢x+%dxx0>¢y+%dyxo
let ) X>Rbe¢ x = -9 x - %d x %y then¢ x <¢ y i.e. ¢ is strictly decreasing under the de-
fined above partial order.
Step three to prove that x, <x,< <x,< = x, Iis convergent.

Letpxzsi’x+%dxxo then

€
0$§d Xy X $p Xy =P Xy Vm>n

Hence p x, is monotone decreasing. On the other hand p x = -8 Yx€X so p «x, isa Cauchy se-
quence hence x, is a Cauchy sequence. Since X is complete  x, is convergent.

Step four to prove that ¥ x€ X  y€ Xly==« is sequentially closed.

Assume that y, =« and y,—>y then

£

2

Since ¢ is lower semi-continuous we have $ y <lim inf¢ y, i.e. limsup —¢ y, <-¢ y . Takinglim-

n—>ow n—> o

dxyns¢x+%dxx0—¢yn +%dynxo

its with respect to n yields

_— 2 —
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%d Xy =< limd «x y, < « +%d x %, +limsup —¢ y, —%d ¥ X
3 e
<¢ «x +dex0 - ¢y +7dyx0

i.e. x<y. Hence y€ X|ly=x is a sequentially closed set.
From the above four steps all the conditions of Lemma 1 are satisfied. Hence X has maximal element under the

partial order i.e. Jx € X such that Y x5~ x <tx which means

3 « . € . 3
2dx x >% w +2dx x0—¢x+2dxx0
therefore
¢ x >¢ x” +%d x" x, +ad x x, —%d x
. 3 . € .
=¢ x —de x —2dx x
=¢ x" —ed x «x .

Remark 1 The inequation in Theorem 1 has nothing with the selection of x, .

Remark 2 Theorem 1 generalizes classical Ekeland variational principle. For example f x = M €R
satisfies all the conditions of Theorem 1 however we can’ t get a e-approximation minimal point of f x from classical
Ekeland variational principle.

Remark 3 Theorem 1 generalizes 6 Theorem 3 . Indeed from the proof of Theorem 1 we can see that it’ s
not needed that the symmetry of the metric d so Theorem 1 can be generalized to quasi metric space.

Corollary 1  Assume that X is a reflexive Banach space ¢ X—>RU + o = + o is weakly lower semi-

continuous and satisfies

lim inf->—% - >0
lal = || |
Then € >0 ¢ has e-approximately minimal point.

Proof Since X is reflexive we have Y M >0 B= xE€ X||lx|| <M is weakly sequential compact. Note
that B is convex closed then B is a weakly closed set. Since $ is weakly lower-continuous we know that ¢ is
bounded from below on the weakly sequential compact and weakly closed set B. The conclusion is proved by Theorem
1.

Corollary 2 Assume that X is a reflexive Banach space ¢ X—>RU + ® = + ® is a convex lower
semi-continuous functional and satisfies

lim inf2 %

fim i =0
Then Y e >0 ¢ has e-approximately minimal point.

Proof From 8 ¢ being convex and lower semi-continuous yields that ¢ is weakly lower semi-continuous on
the weakly convex set x€ X || x| <M v M >0. The conclusion is proved by Corollary 1.

Corollary 3  Assume that ¢ RY—>R is lower semi-continuous and there exists x, € X such that

i =0,

Then Y e >0 ¢ has e-approximately minimal point.

Theorem 2 Let X be a Banach space and ¢ X—>RU + ® =% + » be Gateaux derivative. Suppose ¢ is
bounded from below on each bounded set and satisfies

lim inf—

0.
M T =

Then YV e >0 3Jx € X such that
a ¢xe $¢ X +5Hx—xs

b ¢ % [<e.

VaEX.
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Proof From Theorem 1 a is valid. Hence Y y€ X
pox.+y =b x —ellyll.
Since ¢ is Gateaux derivative there exists ¢’ x, € X" such that
b x.+tu - x. =9 x W +o [l VuEX.
Select u satisfying | u] =1 then
¢ x. tw +ot =% x +tw - x =-elwl=-¢cltl.

When ¢t >0 we have

, ot
¢ x. u + >-c

iie. ¢ x, u =-¢ Whent<0 we have

, [
¢ x. uw + <e

i.e. ¢ x. u <e. From above inequations we have |9’ x, u |<e for u€ X satisfying | ul =1 then

|¢" x |<e i.e. b holds.

2 Optimization Problems with Regular Constraints

Let X be a Banach space F X—R a Fréchet-differentiable function G,

i

X—R l<i<m m continuously
Fréchet-differentiable functions. We consider the constrained optimization problem
lim infF x
G x =0 l<i<p 1
G x =0 p<ism.

We denote by C the feasible set

C= x€XIG x =01<si<p G » =0 p<si<sm . 2
and by I x the set of saturated constraints at a feasible point x € C
i€l v & G x =0. 3
We can now state our regularity assumption which is of quite a standard type
VxEC G x |i€l x  are linearly independent. 4

It is clear that problem 1 is highly nonlinear and it is difficult to get the solution in Banach space. Nevertheless
we can find points which aré almost” optimal and which' almost” satisfy the necessary conditions for optimality. First
we give two lemmas
Lemma2 1 Tete >0 there exists x, € X for every h € X such that
G, x. h =0 Vic 1 p
G, x. h =0 Vi€ p+1 m (1 x.
Then F' =, h ;—EHh”.

Lemma3 1 Letu, l<i<p v i I<sj=<sq and w * be linear functionals on X such that

%

u-:

i

h =0 1<i<p i
_ w' ho=-¢elhl.
v; h =0 l<j<gq

Then there exist p real number A; 1< i< p and ¢ nonnegative number p; 1<j< ¢ such that

P q

. N .

”w - E A, — E yac
i=1 j=1

Theorem 3 Suppose F is Fréchet-differentiable and G, 1<i<m are C' functions satisfying assumption

<.

4 . Suppose moreover F is bounded from below on every bounded set and there exists x, & X such that
lim inf %

T =0.
el == || 6 =2 | =

Then for every € >0 there exists some point x. € C such that
— 4 —
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F x =F «, —e”x—xe Vx&C 5
and there exist real numbers A, A,, such that
HF’ X, —Z)ti(;'i X, ”ge 6
=1

where ;=0 Vi€ p+1 m If G; x. %0 then A, =0.
Proof Step 1 to prove 5 . Define a function F by
Fx =+0o x¢C 7
Fx =F x =x€C.
Since G, 1< i<m are continuous we know that C is closed so F is lower semi-continuous. It is obvious that
lim inf-—%

7>0
Tal—w | 6 =2 | =

and F is bounded from below on every bounded set. Applying Theorem 1 we get a point x, € X such that
V x#x,.

Fx >Fx —elx-nx]

From 7 we have v, € C hence

VaxEC.

Step 2 to prove 6 . Since G; 1<i<m are Fréchet-differentiable they are Gateaux-differentiable so for

F x =F x, —€l|x_xe

every h€ X we have

G x.+th -G, «x
G, x. h =lim—— p —
t—>0

Since G, is Fréchet-differentiable we may restrict h such that x, + th€ C then

lirrol%)z() S| p
¢ x. h o=\
b G, h -0
lir{}#ao i€ p+l m NI «x.

From Lemma 2 and Lemma 3 Theorem 3 is proved.

Remark 4 Theorem 3 generalizes 1 Theorem 3.1
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