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Abstract We study the existence and structure of entire explosive positive radial solutions for quasilinear elliptic sys-

temsdiv | Vu["2Vu =p |x| fv div [ Vol"2Vs =¢ |x] g u on RN where f and g are positive and

non-decreasing functions on 0 o . The main results of the present paper are new and extend the previously known re-

sults.
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div | Vu|"?Vu =p | %] fv o div | Vol "2 Ve =
q lxl gu RY f g 0w

0 Introduction

Existence and non — existence of solutions of the quasilinear elliptic system
div [ Vu|"?Vu +fuv =0 xeR"
div | Vo

has received much attention recently. See for example 2 4 5 7 10 11 . Problem 1 arises in the theory

"2V +guv =0 xeR"

of quasi-regular and quasi-conformal mappings as well as in the study of non-Newtonian fluids. In the latter case
the pair m n is a characteristic of the medium. Media with m n > 2 2 are called dilatant fluids and
those with m n < 2 2 are called pseudoplastics. If m n = 2 2  they are Newtonian fluids.
When m=n =2 system 1 becomes
Au+fuv =0 xeRY
Av+g uv =0 xeRY

for which the existence and the non-existence of positive solutions and explosive positive solution has been inves-
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tigated extensively. We list here for example 1 3 6 8 9 and refer to the references therein.

When m=n=2 f=-p |x| v* g=-q |x| ¢

system 1 becomes
Au=p |x| v* xeR"
[szq x| v xeRY

for which existence results for entire explosive positive solutions can be found in a recent paper by Lair and Wood

2

6 . Lair and Wood established that all positive entire radial solutions of 2 are explosive provided that

Jtptdt=00 ftqtdt:oo.
0 0

On the other hand if

ftptdt<ooftqtdl<oo
0 0
then all positive entire radial solutions of 2 are bounded.
F. Cirstea and V.D. Radulescu 1 and 11 extended the above results to a larger class of systems
Au=p |x| fv xeRY
Av=q |x| g u xeR"

In this paper we consider the following quasilinear elliptic system

div | Vul"?Vu =p ‘x‘fv xeRY 3
div | Vo|"? Vo =q x| g u xeRY
where N=3 m>1 n>1andp geC RY are positive functions and satisfy the decay conditions
f tl_wf s'pos ds VT dE < w0 J tl_“\f s g s ds VN dE < o 4
0 0 0 0
We also assume that f geC 0 o are positive non-decreasing on 0 o  and f and g also satisfy
f fftdt_l/'"ds<ooandf fgtdt_l/"ds<oo 5
1 Jo 1 Jo

In 10  we study the existence of entire explosive positive solutions of systems 3 . In this paper we ob-

tain more results under new conditions. So the following results obtained complement corresponding results in
10 and extend the results in 1 6 11 . Using an argument inspired by Lair and Wood 6 and F. Cirstea

and V. Radulescu 1  we obtain the following main results.

We use the notation R* = 0 + o  and define the
Y= ab eR*" xR |u 0 =a v 0 =b and u v is an entire radial solution of 3

Theorem 1 letf geC' 0 o satisfy 5 andf s <g s fors>0 and the following condition

H for arbitrary nonnegative numbers ¢ d and A e 0 1  the functions f and g satisfy
fAac+ 1-A d sAMc + 1-Afd gix+ 1-Ad<sAagc + 1-Xgd.

Assume 4 holds 7 |x| =min p [x| ¢ [x|] =C>0. Then set £ & and is a closed bounded con-
vex subset of R* xR". Furthermore the set G satisfies

TCGCR 6

where the triangle T and the rectangle R are given by T= u v e R" xR” % + %$l R= 0A4 x

0 B inwhichA=sup aeR*| a0 €G and B=sup beR"| 0 b G .

Theorem 2 letf geC' 0 o satisfy 5 andf s <g s fors>0. Assume 4 holds 7 |x| =C
>0andv=max m 0 n 0 >0. Let E & be the closure of the set a b €9%|a>0 b>0 . Then
any entire positive radial solution u v of 3 with central value v 0 » 0 eE ¥ is explosive.

Remark 1 If N=3 m n<N then condition 4 is replaced by

* 1 1 ® 1 1
O<jrﬁprﬁdr<oo0<frﬁqrﬁdr<ooif1<mn$2 A
1 1

©

® _m=2 N+l n-2 N+l
0<jr""‘prdr<oo 0<jr’“‘qrdr<ooifm n=2. B
I I
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Let
r . t v 1
Jr = f tlf‘\J’ s''p s ds mde
0 0
If fact if 1 <m=<2 by estimating above the integral

t

T 1-N - B
J r < Cl +f fm-1 j 81\ lp s dS 1/ m-1 dt
1 0

Using the assumption N=3 in the computation of the first integral above and Jensens inequality to estimate the

last one

T 3-N-m N-1
Jr C+Cjt”"fs'”‘ s midsde.
Computing the above integral we obtain
T o
Jr <G, +C4f t=Tp ¢ mde
1

Applying A in the integral above we infer that H, =limJ r <o . On the other hand if m=2 set

r—o

t

Hi = f s''p s ds
0

1
and note that either H ¢ <1 fort>0or H t, =1 for some {, >0. In the first case H»-'<<1 and hence

T 1-N T 1-N

Jr :fl'"‘Ht'"‘dt +fltmdl

i
so that J/ r has a finite limit because m < N. In the second case H s »-'<<H s for s=s, and hence

Jr < +frtilwlf “'p s dsde.

Estimating and integrating by parts we obtain

T1=N m — 1 T me2 N+l
<C +C f rde + = e
Jr 6 7 1 N [f} pt dt r fot pt dt]

- m

m=2 N+1

C+cf 1 de.

By B H_=limJ/ r <o. Other second Eq. of condition 4 similarly.
Remark 2 If condition 7 |x| =min p | x | q x| =C>01is replaced by 7 x is non-negative
on QCR" and satisfies the following if x, e 2 and  x, =0 then there exists a domain (2, such that x, e (2,

Cfand n x >0 for all x € 9f),. then the conclusions of Theorems 1 ~2 still hold.

1 Preliminary Results

In this section we consider some preliminary results for quasilinear elliptic equation
div | Vu|"?Vu =p x fu xeRY N=2 7

where m>1 Vu= V,u Viu px R'—5 0w andf 0 o — 0 o are continuous func-

tions. A positive entire solution of the equation 7 is defined to be a positive function u e C' R  satisfying
7 at every point of RY.
From reference 10  we give the following lemma
Lemma 1  Weak Comparison Principle . Let 2 be a bounded domain in RY N=2 with smooth bound-

ary 9Qand § 0 o — 0 o is continuous and nondecreasing. Let u, u, e W'™ (2 satisfy

Lz‘ Vu,

for all non-negative y € Wy ™ (2 . Then the inequality

u, <u, on o2

"2V u, Vipdx +L26 u, Pdx < L\ Vu, |"? Vu, Vipde +L€ u, dx

implies that
u, <u, in (2
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Lemma 2 Iff u satisfies 5 andp x =C >0 then in any bounded domain D there exists a solution
of 7 which becomes infinite on S.
Lemma 3 Suppose that f satisfies 5 feC' 0 o f0 =0andp |x| =C>0 for x e RY and the

following

1 1
J'rmprmdr<ooif1<mn$2
1

® _m=2 N+l .
frmflprdr<oolfmn22
1

Then Eq.

div | Vu

has an entire explosive positive radial solution.

"Vu o=p x| fou

Lemma 4 The problem
div | VL™V = p |x| +q¢ |x|  f1 +g1 8
and
div [VR|"?Vh = p |x]| +q |x] fh +g h 9
has an entire explosive positive radial solution provided that functions n (x| =C>0satisfy 4 andf g satisfy
S5 andf s sg s .
Proof From lemma 2 for each natural number £ let v, be a positive solution of the boundary-value prob-

lem

div [ Vo, |" Vo, = p |x| +¢ x| fo, +g v, x| <k

v,— ® |x| — k.
Again from Lemma 1 we can show that

v =0, = =v, =0, = >0
in RY. To complete the proof it is sufficient to show that there exists a function w e C R such that w —
as |x| — o and v,=w in R for all k. To do this we note first that condition f s <g s and we consider
the equation
div [ Vul|"?Vu = p x| +q [x] fu. 10

By Lemma 3 Eq 10 has a positive solution u on RY such that u x — o as |x| — . We claim that w =
u —1 is a desired lower boundary for v,. Indeed since

div [V v, +1 ["?V v, +1 =div | Vo, |" Vo, = p+q fov, +g v,

< p+q fo+1 +g v+l < p+q fu,+1 for |x|>k

and clearly v, +1 >u as |x| — k& Lemma 1 implies that v, + 1 =u for |x|<k. Hence v = limv,=u -1 on
b o

R". Again by the standard regularity argument for elliptic problems it is a straight forward argument to prove
that v is the desired solution of 8 . By a similar argument we can show that 9 has an entire explosive posi-
tive radial solution.

Lemma 5 Suppose g, h; are positive radial solutions of the problem

div [Vgel"Vagr =p rfgx +q¢r g e Osr<R
gp T — o r— R
and
div | Vh|"*Vh, =p r fhy +qgr gh, O<r<R
hy 1 — o r—R"
where p and ¢ are non-negative C 0 oo functions. Then lim g, 0 = and lim A, 0 =c.

R—0+ R—0+
Proof Since g'; r =0 and p g are bounded on 0 1  we get

g;R r m=1 _ rlﬂ’VJ’OsN*l p s ng s t4q s 8 8¢ $ ds

— 4 —
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$J' psfegr s +qs ggr s ds<af g r +bg gy T
0

then

gwr < of g v +bg g v
[al/ m-1 f gR 1/ m-1 r +bl/ m-1 1/ m-1 r fOr mBZ

1/ m-1 <

g 8r
2 2-m / m-1 al/ m-1 f gR 1/ m-1 r +b1/ m—1 g gR 1/ m-1 r fOl“ l <m< 2

where

a=[ip s ds b=[}q s ds.

Thus we have
d ds <1form=2

drfgk . a]/ m-1 f{/ m-1 s + bl/ m-1 g]/ m-1
) ds
<lforl <m<?2

1, 2-m / m-1 1/ m-1 A/ m-1 1/ m=1 _1/ m-1
ergR , 2 m m a m jpl m s + b m g m

— o asr — R~ we get

Now integrating from 0 to R and recalling that g, r

©
ds
f 1 m=1 A/ m-1 UV m1 1/ m-1 < Rform =2
0 a f s +b g s
o
ds
J- 2-m / m-1 UV m-1 A/ m-1 1/ m-1 1/ m-1 < Rforl <p <2.
a0 2 a Va s +b g s

Letting R — 0" yields
ds -0

1/ m-1

©

Rlifg r0 1/ mfljpl/ mel ol e g

Hence we have g, 0 — o as R — 0". By a similar argument we can show that h, 0 — © as R —>0".

By similar argument with Lemma 6 of 6
Lemma 6 Let [ h be any entire explosive positive radial solution of 8

by
" (! V— m—
a+f tl_A‘J’sAlpsgkals ds V" 'de r=0
0 0
T t N
tl_“‘\f s"‘\‘_lq s fu, s ds Vrlde r=0
0

v, T :b+j
0
h 0O andv, r =b 0<b<min [/ 0 h O . Then

reR* k=1 and

it is easy to prove the following lemma
~ 9 given in Lemma 6 and de-

fine the sequences u, and v,

w, r =

where uy=a 0<a<min [ 0

a u, r <u,,, r ando, r <v,,, r

b w, r<lr andv, r <hr reR" k=l
Thus wu, and v, converge and the limit functions are entire positive radial solutions of system 3

2 Proof of Main Theorems

Proof of Theorem 1 Since the radial solutions of 3 are solutions of the ordinary differential equations

system
! ' ["2u” " = Mo or g P o' """ = Mg r fur forr >0
it follows that the radial solutions of 3 withu 0 =a>0 » 0 =b>0 satisfy
r t R
ur :a+J' t]wfs"\;lpsgvs ds V" dt r=0 11
0 0
12

r ot N e
vr =b+f tl_“‘\fs"\lqsfus ds " "dt r=0.
0 0
C ¢ so that " is non-empty. We shall show that

From Lemma 6 itis clearthat 0 g 0 x 0 h O

% is a bounded closed set.
As a preliminary note thatif @ b e ¢ then any pair a, b, for which 0<a,<a and 0 <b,<b must be

in % since the process used in Lemma 7 can be repeated with
— 5 —
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" v ¢ N— -
u, T = a, +J tlf“‘\f s 1p s g v, s ds Vom=b g
0 0

r [
v, r =b, +f tH\f sg s fu,s ds VT de
0 0

and v, =b u, =a. Then as in Lemma 6 the sequences u, and v, are monotonically increasing. Then

letting U V be the solution of 11 and 12 with central values a b  we can easily prove since b, <b

that vy<<V. Thus u,<U since also @,<a and consequently v, <V and so on. Hence we get u, <U and

v, <V and therefore u<U and v<V where w v = lim wu, v, isa solutionof 3  with central values q,
k— o

b

Lemma 2 ensures the existence of a positive explosive solution h, h, of the problem

div | VA |"?Vh, =n |x| g h, inB OR
h— o |x| >R
div | Vh,|"*Vh, =5 |x| g h, inB OR

h,— |x| — R.
To prove that " is bounded assume that it is not. Then there exists a b e ¥ such that @ + b > max
26 hy 0 +h, O . Let u v be the entire radial solution of 3 suchthat « 0 » 0 = a b . Since
ux +v x =a+b>28forallxeRY byfs <g s we get
div | Vu

On the other hand h, x — © h, x — ® as |x| — R. Thus Lemma 1 we conclude that u +v<<h, +h,

"Vu =p |x| g =7 x| g v div [Vo|"? Ve =q |x| fu =7 x| g u .

in B 0 R . But this is impossible since u 0 +v 0 =a+b>h, O +h, O .
To prove that & is closed we let a, b, e and show that a, b, €% Let u v be the solution of
11 and 12 which corresponds to @ = a, and b =b,. Without loss of generality we may assume that max a,
by, >C=1 0 where the function [ is given in Lemma 7. If max a, b, =a, then C<a,-1/k for large k so

that u, r =C for all r=0 and for all k sufficiently large where

1 P L me
u, = a, —f+J’0 ¢ ‘\Jos‘\ s g, s ds VT de

r 13
v, = by + fo tl_“‘\fos"‘\‘_lq s fu, s ds V7 de

From 11  we have

div | Vu, ["?Vu, =g rguv, div |[Vo "7V, =9 rgu, .
Let h, r h, r are positive solution of
div | VA |"7?Vh, =nrgh 0<r<R,
hy 1 —> o r—R,
and
div | Vi, |"?Vh, =9 r g h, O<r<R,

h, r — o r—R;
where R, is an arbitrary positive real number. It is now easy to show by Lemma 1 that u, + v, <h, + h, in
0 R, . Hence u+v = klirr; u, +v, <h, +h,on 0 R, . Since R, is arbitrary the functions u v exist on R"
and hence are entire so that a, b, € ¥ On the other hand if max a, b, =b, then C<b, —1/k for large k

so that v, = C for all r =0 and for all sufficiently large k. Then w, r = C* A r where A r =
j tl_Nf s''p s ds """ dt and the proof continues as before with C replaced by C*A r .
0 0

To prove that Zis convex suppose a b eGand a@ b eG. Letxe 01 let u v be the solution of
11 and 12 andlet U V be the solution of 11 and 12 when a b isreplace by @ b . We need
toprove that A a b + 1 -2 a b eG. Todo this welet u, v U, and V, be the increasing

n n

sequences of functions as developed in Lemma 4 such that u,/u v,/v U,/U and V, /V. Likewise let w

— 6 —
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and z, be the sequences developed again as in Lemma 4 corresponding to central values A a+ 1 -A d and
Ab+ 1-X b respectively. We also let z, =A b+ 1 - b. We shall show that the increasing sequences

w, and z, satisfy

w,<Au, + 1-A2 U, z,<Mv,+ 1-AV, 13

which in turn implies that w, and 2z, converge and hence their limits are entire giving A a b + 1 -

A ab eG. Clearlyzy<Av,+ 1-A V,. Wealsohave f v, + 1 -A V, <A v, + 1=\ fV,
and g Ay + 1-A V, sAgwv, + 1 -1 g V, bycondition H . Then

r t B

w, T =la+ 1-) a4+ t]wfs“\;lp s fzgs ds V" dt
0 0

r t

SAa+ 1 -) a tl_‘vj sSSTps fag+ 1 =A Vyds V" de
0

+

0
r

SAa+ 1 -2 d+ tl_Nf(’sz_lp s fAy, + L=AfV, ds V" dt

0

J
J
J
<A+ 1-A é+ff N £ e, =AMV, dsd
N oo(t) P s Yo 0 sdi

=Au, + 1 -A U,.
Using this result we can prove similarly that z;, <A v, + 1 —A V, which in ture can be used to get w, <Au,

+ 1 -A U,. Continuing this process will produce 13
To prove 6 it is clear that since A 0 and O B arein G and G is convex the line % +% =11isin

G. And as noted earlier if @ b G then x, y, € G whenever 0<x;,<a and 0<y,<b. Hence TCG.
Similarly GCR forif a, by, €G then a;, 0 eGand 0 b, €G. Thus 0<a,<A and 0<b,<B so that
a, b, €R. This completes the proof.
Proof of Theorem 2 The proof is similar to the Theorem 2 of 1 6 10  so we omit the detail.

References

1 Cirstea F Radulescu V. Entire solutions blowing up at infinity for semilinear elliptic systems J . J Math Pures Appl 2002
81 827—846.
2 Clement Ph Manasevich R Mitidieri E. Positive solutions for a quasilinear system via blow up J . Comm in Partial Diff
Eqns 1993 18 12 2071—2106.
3 Clement Ph  Figueiredo D G de Mitidieri E. Positive solutions of semilinear elliptic systems J . Comm in Partial Diff
Eqns 1992 17 5—6 923—940.
4  Felmer P I. Manasevich R Thelin F de. Existence and uniqueness of positive solutions for certain quasilinear elliptic system
J . Comm in Partial Diff Eqns 1992 17 2013—2029.
5  Guo Z M. Existence of positive radial solutions for a class of quasilinear elliptic systems in annular domains J . Chinese
Journal of Contemporary Math 1996 17 4 337—350.
6 Lair AV Wood A W. Existence of entire large positive solutions of semilinear elliptic systems J . J Differential Eqns
2000 164 2 380—394.
7  Mitidieri E Sweers G Van der Vorst R. Nonexistence theorems for systems of quasilinear partial differential equations J .
Differential Integral Equations 1995 8 1331—1354.
8  Mitidieri E. Nonexistence of positive solutions of semilinear elliptic system in RN J . Diff Integral Equations 1996 9 465—
479.
9  Peletier L A Van der Vorst R. Existence and non-existence of positive solutions of non-linear elliptic systems and the bihar-
monic equations J . Diff Integral Eqns 1992 54 747—767.
10 Yang Zuodong. Existence of entire explosive positive radial solutions for a class of quasilinear elliptic systems J . J Math
Anal Appl 2003 288 768—783.
11 Yahong Peng Yongli Song. Existence of entire large positive solutions of a semilinear elliptic system J . Applied Math and
Comput 2004 155 3 687—698.



