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Abstract ; Consider the equation a™ =n! +(n+1)! +--+(n+k)! witha>1, m>1, n==1. We show that when
a#0 mod 223092870, all solutions of the equation are 2° =21 +31,32 =11 +2! +31,25 =21 +3! +4!and 12?
=41 +51; when a=0 mod 223092870, let p be the least prime with p Ya, if the equation has solutions, then m<p.
Moreover, we conjecture that the foregoing four solutions are only solutions of the equation.
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0 Introduction

Erdsés and Burr [2] ever conjectured that the largest solution of the equation

2" =t +n,! + - + 01, wheren, < n, < - <y (1)

2" =21 +31 451
Shen Lin ever proved this conjecture and found all solutions of Eq. (1) when the power of 2 is replaced by a
power of 3. Grossman and Luca [3] investigated Eq. (1) when 2" is replaced by a member of a given non-de-
generate binary recurrence sequence. For other related problems, one can refer to[ 1][5].
Let a be a given positive integer with @ > 1. The following problem is natural and interesting: are there infi-
nitely many m for which @™ can be represented as a sum of consecutive factorials?

In this paper, we investigate the equation
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a" =n'+(n+1)! +--+(n+k)!, wherea>1, m>1,n=1 (2)

and show that the answer to the question is negative. In fact, the following results are proved.

Theorem 1 For a#0 mod 223092870, all solutions of Eq. (2) are

22 =21 +31,37=11 421 +31,2° =21 +31 +4! and 127 =41 +5).

Theorem 2 For a =0 mod 223092870, let p be the least prime with p }a, if Eq. (2) has solutions, then
msp. .

By Bertrand’ s postulate [4], it is easy to show that if n >1,then n! is not a power. Thus we need to con-
sider the equation when k=1. In the following, we always assume that ¢ >1, k=1 and m > 1.

For convenience, we give the following notations: let a € Z and p be a prime, if r is a nonnegative integer
with p’ || @ (that is, p" || a but p’*' }a), then r is denoted by ord,(a). Let L(n,k) =n! +(n+1)! +--+
(n+k)L.

1 Proof of Theorem 1

Lemmal LetacZ” andpbeaprime. fn=3 andn=2p-1,1=1,3,4,5, thena"#L(n,k) (k=1).
proof It is easy to see that
L(n,1) =(n+2)n!, L(n,2) =(n+2)?n), L(n,3) =(n+2)n! (n®+5n+5),
L(n,4) =(n+2)n! (i*(n+5) +4(n+1)(n+5) -3).
Casel [=1. Thenp|nl, p’l(n+t)! (¢t=1).
Hence, for m >1, we have a" #L(n,k) (k=1).
Case2 [=3. Then, by n=3 we have
plint,p | (n+2)nl p| (n+2)*n! and p*1 (n+1) ! (:=3).
Hence, for m >1, we have a" #L(n,k) (k=1).
Case 3 [=4. Note that n” +5n+5=(n+4)(n+1) +1, we have p }n’ +5n +5.
Thus, by n=3 we have p || (n +2)n!,p || (n+2)*nl,p | (n+2)n! (n* +5n+5),
and p* 1 (n+1t)! (1=4).
Hence, for m >1, we have a" #L(n,k) (k=1).
Cased4 [=5. By n=3,we have p=5. If p=5, thenn=2p~-5=5=2x3 -1. This is Case 1. Now we
assume that p >5. By n=2p -5, we have pln +5. Then
p¥ni(n+5) +4(n+1)(n+5) -3,p%n(n +5) +5.
Thus
pll(n+2)nt,p| (n +2)nl,p || (n+2)n! (n® +5n+5),
pll(n+2)n! (i*(n+5) +4(n+1)(n+5) =3), and p°I(n+2) ! (¢=5).
Hence, for m >1, we have a"#L(n,k) (k=1).
This completes the proof of Lemma 1.
Lemma 2 For n=1,2,4, all solutions of Eq. (2) are
20 =21 +31,3%=11 +21 +31,2°=21 +3! +4! and 122 =41 +5!.
Proof Casel n=1, itis easy to compule that if k<7, then the only solution of Eq. (2) is 32=11 +
20 +31,
By L(1,8) =32 x5137 +2" x3* x5 x7, if a" =L(1,k) (k=8), then
3%|a™, m=2 and a°=3 mod 5, a contradiction.
Hence, a” =L(1,k) if and only if k =2.
Case 2 n =2, it is easy to compute that if k<5, then the only solutions of Eq. (2) are 2° =21 +3! and
2° =21 +3! +41.
By L(2,6) =2° x739 +27 x3* x5 x7, if a" =L(2,k) (k=6), then
2* | a™, m=3 and @’ =4 mod 7,
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which contradicts with the fact that ¢ =0,1 or 6 mod 7 for a € Z.
Hence, a" =L(2,k) if and only if k=1 or 2.
Case3 n=4, it is easy to compute that if k<3, then the only solution of Eq. (2) is 12° =41 +51.
By L(4,4) =2* x3% x41 +27 x3* x5 x7, if a" =L(4,k) (k=4), then

2* ||la™, m=2,a"=3 mod 7 or m=4,a"=3 mod 7,

both contradict with the fact that ( %) = -1

Hence, a" =L(4,k) if and only if £ =1.
This completes the proof of Lemma 2.
Lemma 3 Forn=8,12, 14,15,16,20, Eq. (2) has no solutions.
Proof Casel n =8, itis easy to compute that a” #L(8,k) (k<3).
By L(8,4) =2° x3% x5* x7 x109 +2" x3° x5% x7 x11,if a" =L(8,k) (k=4), then
3? | a™, m=2, and XS %3 ng ><32E3 mod 4 ,a contradiction.
Hence, we have a”" #L(8,k) (k=1).

Case2 n=12, it is easy to compute that a” #L(12,k) (k<2).

By L(12,3) =2 x3° x5* x7* x 11 +2" x3° x5° x7*> x 11 x13, if a" =L(12,k) (k=3), then

3* ||a™,m =5 and 5% || a",m =2, a contradiction.

Hence, we have a” #L(12,k) (k=1).

Case3 n=14, by L(14,1) =2" x3° x5% x7% x11 x13 +2" x3° x5° x7* x 11 x 13, if a" = L(14 k)
(k=1), then

3* | a™, m=5and 5° || a”, m =2, a contradiction.

Hence, we have a” > (14 ,k) (k=1).

Cased n =15, it is easy to compute that " % L(15,k) (k=2).

By L(15,3) =2" x3° x5° x7% x11 x13 x17% +2'* x3* x5’ x7* x 11 x13 x17, if a" =L(15,k) (k=
3),then

2" | @™, m=11 and 3° || @™, m=2,3 or 6, a contradiction.

Hence, we have a" #L(15,k) (k=1).

Case 5 n =16, it is easy to compute that a" #L(16,k) (k<3).

By L(16,4) =2" x3% x5° x7* x 11 x13 x341 +2" x3* x5* x7* x11 x13 x17 x 19, if a" = L(16,k)
(k=4), then

5] a™, m=3 and 2" || @™, m=2,4,8 or 16, a contradiction.

Hence, we have a” =L(16,k) (k=1).

Case 6 n =20, we have

L(20,1) =2" x3* x5* x7% x11 x 13 x17 x19 +2" x3° x5* x 7> x 11 x13 x 17 x 19, if a" =L(20,k)
(k=1), then 7* || @™ ,m =2 and

2
a =3 mod 7,

2" x3% x5* x7

which contradicts with the fact that (%) = -1.

Hence, we have a" #L(20,k) (k=1). This completes the proof of Lemma 3.

Proof of Theorem 1 By Lemma 1 and Lemma 3, we know that if 4 <n <23, then Eq. (2) has no solu-
tions. Thus, if Eq. (2) has solutions, then 24! |a™ or n<4.
If 241 1a™, then a= 0 mod 2 x3 x5 x7 x11 x13 x17 x19 x23,
that is

a=0 mod 223092870.
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If n<4, by Lemma 1 and Lemma 2, we know all solutions of Eq. (2) are

20 =21 431,37 =11 +21 +31,2° =21 +31 +4)and 12° =41 +51.
Hence, when a#0 mod 223092870, all solutions of Eq. (2) are

2% =21 +31,3% =11 +21 +31,2°=21 +31 +4!and | 12°=41 +51.
This completes the proof of Theorem 1.

2 Proof of Theorem 2

By the proof of Theorem 1, if Eq. (2) has solutions and a =0 mod 223092870, then n=24. In the follow-
ing, we assume that n=24.

By p being the least prime with p }a, we have n<p -1 and p=29.

Casel 2in+1.

Ifa"=n! +(n+1)! +-+(n+k)! (k=1), then 272" | ™.

Thus m<ord,(n!) <n<p-1.

Case2 2Vn+l.
n
2
Ifa"=n! +(n+1)!, thena™ =(n+2)n). By ¢' }(n+2)n!, we have m<3 <p.
Ifa"=n! +(n+1)! +(n+2)!, then a" =(n+2)’n!. By ¢’ N(n+2)’n!, we have m<6 <p.
Ka"=n! +(n+1)! +(n+2)! +(n+3)!, thena" =(n+2)n! (n* +5n+5).

By Bertrand’s postulate, there exists a prime ¢ such that — <¢ <n. Then 2¢ >n.

3
By ¢’ >%23n2 > n’ +5n+5, we have ¢° }n® +5n +5. Thus ¢’ }(n +2)*n! (n’ +5n +5).

Hence, m<6 <p.

Now we assume that k=4.

Let 2° || (n +2) (n* +5n +5)n!. By 2} +5n +5,we have 2° || (n +2)nl.

By 2Yn +1, we have 2°*'| (n+1)! (t=4).

Thus, if ™ = (n+2) (n® +5n +5)nl +--+(n+k)!, then 2° || a™.

Hence m<a=ord,((n+2)!)<n+1<p.

This completes the proof of Theorem 2.

Remark Up to now, we have verified that when 24 <n <50, Eq. (2) has no solutions. Thus, if Eq. (2)
has other solutions different from the foregoing four solutions, then a =0 mod 614889782588491410. Hence, we
have enough reasons to support the following conjecture.

Conjecture All solutions of Eq. (2) are

2° =21 +31,3% =11 +21 +31,
2° =21 +31 +41,12° =41 +51.
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