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Disjoint Quasi-Kernels in Digraphs

Sun Zhiren, Miao Xiaoyan

(School of Mathematics and Computer Science, Nanjing Normal University, 210097, Nanjing, China)

Abstract: A vertex set X of a digraph D = (V,A) is a kemel if X is independent and for every v e ¥ ~ X there exists x
€ X such that vx € A. A vertex set X of a digraph D = (V,A) is a quasi-kernel if X is independent and for every ve V -
X there exist we V- X, x € X such that either vx € A or vw, wx € A. In this paper, we provide a necessary condition and
several sufficient conditions for a digraph to have a pair of disjoint quasi-kernels.
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0 Introduction, Terminology and Notation

A vertex set X of a digraph D =(V, A) is a kemnel if X is independent and for every v e V — X there exists
x € X such that vx € A. A vertex set X of a digraph D = (V,A) is a quasi-kernel if X is independent and for every
veV-X there exist we V- X, x € X such that either vx e A or vw, wx e A. A digraph T = (V,A) is a tourna-
ment if for every pair x, y of distinct vertices in V, either xy € A or yx € 4, but not both. A vertex of out-degree
zero is called a sink. A vertex in a tournament is called a king if every other vertex is reachable by a directed
path of length at most two. A quasi-kernel of cardinality 1 is called a 2-serf of D. For a digraph D, we denote the
vertex (arc) set by V(D) (A(D)). Let x,y be two vertices in D, if xy e A(D), we say x dominates y, and y
is dominated by x, and denote it by x — y. The closed in-neighbourhood ( closed out-neighbourhood) of a vertex
x is defined as follows.

Ny[x] ={x} UlyeV(D):y =z} (Ny[x] =iz} UlyeV(D):x —y})

If the digraph under consideration is clear from the context, then we’ 1l omit the subscript ). We use the stand-
ard terminology and notation on digraphs as given in [1]. Let x, y be two vertices of D and Y be a subset of
V(D). If (x,y) #QD((x,y) =), then x dominates y (x doesn’t dominate y). If (x,Y) # & ((x,Y) =
&), then there exists (doesn’t exist) a vertex y € Y such that x — y. Let D be a digraph with n vertices, we
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may assume V(D) ={1,2,3, -+, n}. Now we replace each vertex i of D by an independent set H;(1 <i<n)
and if ¢ dominates j, then each vertex of H, dominates all the vertices of H,. We denote the new digraph by D
[Hl sz;"',Hn]-

In 1974, Chvétal and Lovasz'®! proved that every digraph has a quasi-kernel. In 1996, Jacob and Mey-
niel'®! proved that if a digraph D has no kernel, then D contains at least three quasi-kernels. The Jacob-Meyniel
theorem extends the result of Moon"*! that every tournament with no sink has at least three 2-serfs. In [3], they
characterize digraphs with exactly one and two quasi-kernels and provide necessary and sufficient conditions for a
digraph to have at least three quasi-kernels. In this paper, we study the disjoint quasi-kernels in digraphs. We
start with a problem.

Problem If a digraph has no sink, then has it a pair of disjoint quasi-kernels?

The minimal counterexample is D in Fig. 1.

Obviously, D has no sink. Let T, denote the maximum tournament in D having the property that for every
pair x, y of vertices there exists a vertex z such that x — z and ¥ — z. Each quasi-kernel of D contains exactly
one vertex in T,, since T, is a tournament. Considering any two quasi-kerels @, and @, containing the vertices
x and y, respectively, they are not disjoint because both of them have to contain z', where x — z and ¥ — 2.

But the converse proposition of the problem is right. (see Lemma 1)

1 Preliminaries

Lemma 1 If a digraph D has a pair of disjoint qua-
si-kernels, then D has no sink.

Proof If D has a sink x, then every quasi-kernel in
D must contain x, a contradiction.

Lemma 27" Let x be a vertex in a digraph D. If x
is a non-sink, then D has a quasi-kernel not including x.

Theorem 1'°!  Every tournament without vertices of

indegree-zero has at least three kings.

Since the converse of a tournament is a tournament, Fig 1.The minimal counterexample D

the above theorem can be reformulated for 2-serfs.
Lemma 3 Every tournament with no sink has at least three 2-serfs.

Lemma 4%

2 Main Results

Every digraph has a quasi-kernel.

Theorem 2 Let T be a tournament with n vertices. If T has no sink, then T[ H,, H,, ---, H,] has at
least three quasi-kernels and they are pairwisely disjoint.

Proof Let V(T) ={1,2,3,---,n}. By Lemma 3, T has at least three 2-serfs. Let x, v, z be three 2-serfs
of T. Hence, H,, H,, H, are the quasi-kemels of T[ H, ,H,,--- ,H,] and they are pairwisely disjoint.

Theorem 3 Let D be a digraph with no sink. If D has precisely two quasi-kernels, then they are disjoint.

Proof Let Q, and Q, be the only two quasi-kernels in D. If there exists a vertex x € Q; NQ,, then it fol-
lows from Lemma 2 that x is a sink of D, a contradiction. Hence, @, and Q, are disjoint.

Theorem 4 Let D be a digraph with no sink. If D possesses a quasi-kernel of cardinality at most two, then
D has a pair of disjoint quasi-kernels.

Proof If D possesses a quasi-kernel Q, of cardinality 1, then we let Q, = {x}. Since x is a non-sink, it
follows from Lemma 2 that D has another quasi-kernel Q, not including x. Hence, Q, and Q, are disjoint quasi-
kernels in D. If D possesses a quasi-kernel Q, of cardinality 2, then we let Q, = {x,y}. Since y is a non-sink,
there exists a vertex ze V(D) such that y — z. Obviously, z#x. f N [z] =V(D), then Q, = {z| is a quasi-
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kernel in D not containing x and y. Hence, Q, and (), are disjoint quasi-kernels in D. If N™[z] #V(D), then
we consider the following two cases.

Casel xeN (z2)\|y}.

Let Q, be a quasi-kemnel in D - N~ [z]. If z dominates a vertex in (,, then Q, is a quasi-kernel in D not
containing x and y. If z doesn’ t dominate a vertex in Q,, then Q, = Q, U {z} is a quasi-kernel in D not contai-
ning x and ¥y.

Case2 xeD-N[z].

Subcase 2.1 x dominates a vertex in D - N~ [z].

Clearly, x is a non-sink in D ~ N~ [z]. By Lemma 2, D - N[ z] has a quasi-kernel Q, not including x. If
z dominates a vertex in Q,, then Q, is a quasi-kernel in D not including x and y. If z doesn’ t dominate a vertex
in Q,, then Q; =Q, U {z} is a quasi-kemel in D not including x and y.

Subcase 2.2  x doesn’t dominate a vertex in D - N~ [z].

Since x is a non-sink in D, x must dominate a vertex in N™ (z)\{y}. Also, N" (x) CN” (z)\{y}. Con-
sider one vertex we N* (x). We delete N™ (w) from D =N~ [z]. Let (, be a quasi-kernel in D - N~ [z] -
N~ (w). If z doesn’ t dominate a vertex in Q,, then Q, =Q, U | z{ is a quasi-kernel in D not including x and y.
If z dominates a vertex in Q,, then we consider the vertex w. If w doesn’t dominate a vertex in Q,, then @', =
Q,U {w} is a quasi-kernel in D not including x and y. If w dominates a vertex in Q,, then Q, is a quasi-kernel
in D not including x and y.

Therefore, D has a pair of disjoint quasi-kernels.

Theorem 5 Let D be a digraph with no sink or 2-cycle. If D possesses a quasi-kernel Q, = {x,, x,, %;}
with N™(x,) =J(i=1, 2) and there’s no triangle w,w,w,w, with w, e N* (x,) (i =1, 2, 3), then D has a
pair of disjoint quasi-kernels.

Proof Since D has no sink, N* (x;) #@F(i=1,2,3). U N (%) NN* (x,) # O, then we consider a
vertex we N* (x,) NN* (x,). Let Q be a quasi-kernel in D - N~ [w]. We need only to consider two cases:
(1) x, e N (w)\{x,,%,}, (2) x;€D-N"[w]. By the same proof as Theorem 4, we can prove that D has a
pair of disjoint quasi-kernels. If N* (x,) NN* (x,) = J, then we consider w; e N* (x,) and w, e N* (x,).
Clearly, w, #w,. We consider the following two cases.

Casel x,eN (w,)UN (w,).

Let Q be a quasi-kernel in D — N [w,;] =N~ [w,]. Since D has no 2-cycle, we consider the following
three subcases.

Subcase 1.1  (w,,w,) = (w,,w,) =J.

All the possible cases are listed in the following table:

(w,,Q)#Q (w;,Q) #2 Q=0
(w,,Q)#Q (w,,Q) = 0 =QU {w, !
(w,0) =0 (w,Q) # D 0, =QU {w !
(w,0) =0 (wy,Q) =2 0, =QU {wy ,u, |

Subcase 1.2  (w,,w,) #J but (w,,w,) =J.

Subcase 1.3 (w,,w,) = but (w,,w,) #J.

Similarly as Subcase 1.1, we can get a quasi-kernel Q, in D.

Case2 x,¢N [w ]JUN [w,].

Clearly, x, e D'=D -N"[w,] -N™ [w,]. If x; dominates a vertex in D', then x, is a non-sink in D'. By
Lemma 2, D’ has a quasi-kernel Q not including x;. Then we can similarly do as Case 1. If x, doesn’ t dominate
a vertex in D', then N* (x,) €N~ (w,) UN™ (w,). Since N (x,) = (i=1,2), we have N (x;) C
N (w,) UN™ (w,) \{x,,x,}. Without loss of generality, we may assume that x, dominates a vertex w; in
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N (w,)\{x,}. We delete N™ (w;) from D', and we get D" =D ~N"[w,] ~N [w,] =N (w;). Let Q be a
quasi-kernel in D”. Since D has no 2-cycle, we consider the following three subcases.

Subcase 2.1  (w, ,w,) =(w,,w,) =.

(1) (w,, Q)#D, (w,, Q) #D.

If (w,, Q) =, then Q, =QU {w,}. Otherwise, @, =Q.

(2) (w, @)=, (w,, Q) =J.

Whenever (w,;, Q) =@ or not, Q, =QU {w,}.

(3) (w;, Q) =9, (w,, Q) # .

If (w,, Q) #J, then Q, =QU;W1}- If (wy, Q) = and (w,, wy) =(w;, w;) =, then Q, =
QU {w,, wy}. If (wy, Q) = and (w,,w,) #, then @, =QU {w;}. If (w;, Q) = and (w,, w,) #
@, then Q, =QU {w,}.
1) (w, Q) =0, (w,, Q) =C.
Whenever (w,, Q) = or not, Q, =QU {w,, w,|.

Subcase 2.2 (w,,w,) =&, (w,,w,) #J.

Subcase 2.3 (w,,w,) # D, (w,,w,) = .

Similarly as Subcase 2.1, we get a quasi-kernel Q, in D.

Since D has no triangle w,w,w,w, withw, e N* (x,) (i =1, 2, 3), w, doesn’ t dominate w,. Hence, either
(w,,w3) = (wy,w,) = or (wy,w,) #* but (w, ,w;) =J.

(1) (w,, Q) =D, (w,, Q) #J.

If (w;, Q) =, then Q, =QU {w;}. Otherwise, @, =Q.

(2) (w,, Q) #D, (w,, Q) =QD.

Whenever (w;, Q) =& or not, @, =QU {w,}.

(3) (wy, Q) =, (w,, Q) #D.

If (wy, Q) #, then Q, =QU {w,}. If (w,, Q) = and (w,, w;) =(w;, w;) =, then @, =QU
fw,, wyl.

If (w,, Q) = and (w;, w,) #Q, then @, =QU {w, |.

(4) (wy, Q) =D, (w,, Q) =

If (wy, Q) #, then Q, =QU {w,}. If (w;, Q) =& and (w,, w;) =(w;, w,) =, then @, =QU
fw,, wyl.

H (wy, Q) = and (w,, w,) #J, then @, =QU {w, }.

In Case 1 and Case 2, Q, is a quasi-kernel in D. Also, Q, and Q, are disjoint.

Problem Let D be a digraph with no sink. If D contains at least three quasi-kernels with each quasi-ker-
nel of cardinality at least three, then what is a sufficient condition for D to have a pair of disjoint quasi-kernels
(except the condition cited in Theorem 5) 7
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