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Abstract : In this paper, we use Krawczyk-like interval operator and Gauss-Seidel interval iterative method to solve the
nonlinear complementarity problems. This is another application of Krawczyk interval operator.
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0 Introduction

Complementarity theory, which has been studied intensively in the last several decades, is generally consid-
ered to be a domain of applied mathematics. The complementarity problem arises in a variety of contexts such as
optimization , game theory, economics, classical mechanics, stochastic optimal control, etc. The primary source
of complementarity problems are equilibrium problems in economics, physics and engineering and the necessary
conditions for optimality for mathematical programs.

Because of the many important applications of the complementarity problem, the development of the condi-
tions assuring the existence of a solution to this problem was always of big interest. So far many researchers have
established a variety of conditions for the solvability of the complementarity problem.

Our study is motivated by the papers by Zhenyu Wang and Zuhe Shen [5], and B. C. Eaves [4]. Zhenyu
Wang and Zuhe Shen [ 5] introduced a Krawczyk-like interval operator.

Let f: R">R". The nonlinear complementarity problem, denoted by NCP( f), is to find the vector x € R"
such that

x>0, f(x) >0, x’f(x) =0, (1)
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where we assume that f is continuously differentiable.

For the problem many iterative method have been developed, but few inclusion method has been studied for
it to give both the approximate solutions and the guaranteed error bounds synchronously before G. E. Alefeld, X.
Chen and F. A. Potra proposed the validation methods for linear and nonlinear complementarity problems in
[2,3]. However, just as we notice, the validation method are based on the Moore test for the existence of solu-
tions to the following equivalent formulation

min{x, f(x)} =0, (2)
and the author had to utilize the generalized Jacobian or the slope to construct the algorithms since the min map
is non-smooth. The problem (1) can be formulated as a fixed point problem [4]. x solves NCP(f) if and only
if x is a fixed point of the map

P(x) =max{0,x —f(x)}.
In this paper, we use Krawczyk-like interval operator and Gauss-Seidel interval iterative method to solve the non-
linear complementarity problems.

The paper is organized as follows. In the next section factorable functions is introduced. A method of the so-
lution of the NCP( f) is proposed in Section 3. An algorithm and some examples on several NCP( f) are provid-
ed in Section 4 and Section 5.

The following notations is used throughout our paper. For an one-dimensional interval [x] =[x,, %], de-
fine

I[{x]1 =max{ lx,1, lxgl},

w([2]) =25 -,

m([x]) = (% +%5)/2.
For an n-dimensional interval [x] = ([%,], [%,], *--[%,])" define

x]l =max{i[x]1},
w([x]) =maxlu([])],
m([x]) =(m([%]), m([%,]), -, m([2,]))".
For an interval matrix [A ] with interval coefficients [A; ], define
1AL = max 3 1 (4,11,

and define m([A]) the real matrix with components m([4;]).

1 Factorable Functions

Derivative arithmetic and slope arithmetic are applicable to so-called factorable functions.
Definition 1.1 The function f; DCR"—R' is a factorable function if and only if it can be represented by
an expression f(x) which is the last element in a finite sequence (f;(x)) of expressions such that
fix) =5, (i=1, =, n)

and for i >j, k

fi(x) =c eR,
fi(x) = =f(x),
orfor x ef{+, -, -, /},
fi(x) =f(x)fi (%),
or for ¢, e @,
fi(%) =@.(fi(%)),
where
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d=1{(-)", exp(+),In(+),sin(+), .
Theorem 1.2 [1] Let f: DCR"—R! be a factorable function defined by the sequence f,(x). Let the
first order slope f[ %, z] of f be defined recursively by

fi(x) =¢;=filx, 2] =0, (2)
fi(x) =x=fi[x, 21 =¥ (i=1,-,n), (3)
where e'” is row i-th of the n X n unit matrix,
filx) = =f(x) = filx, 2] =f[x, 2], (4)
fi(2) =£(x) ££,(2) = filx, 2] =f[x, 2] 2fi[ %, 2], (5)
filx) =fi(x) fi(x) = fil %, 2] =flx, z]fi(x) +fi(D)filx,2], (6)
fi(x) =f () /fi(x) = filx, 2] = (fl=x, 2] -fi(Dfil%,2]) /i (%), (7)
and for ¢, e D,
fi(x) =, (f(2)) = filx, 2] =£,1f;(x), f;(2) Ifi[x,2], (8)
where j, k<i. Then ( Vx, ze D)
Ax) =f(z) +flx, 2] (x -2). (9)

The theorem (1.2) contains formulate for determining first order slopes of factorable functions. The first or-

der slope f{x, z] of fis the first order divided difference of f and may therefore be regarded as an estimate of

f(x).
2 A Test for Existence of Solutions

2.1 Interval Max-Operation
Let [x] =[x, x5] be an n-dimensional interval vector, where x,, x5 € R" and x, <x;. Define a component
— wise interval operator
max{0, [x]} =[max{0, x,;}, max{0, x5} ].
For example
[-2,4]
W=, )
then
max {0, [«x]} = ( o, 4])
0
It is easy to see that the operation might transform some omponents of the n-imensional interval vector [ x ]
as a point interval [0, 0], which we denote by O for convenience in the rest of the paper.
Proposition 2.1 max{0, x} e max{0, [x]}, Vxelx].
2.2 Properties of Complementarity
As we know, the solution to the complementarity problem NCP(f) is not affine invariant. On this issue, we
just have the following result, which could be verified easily.
Proposition 2.2 Let D =diag(d,, d,, -, d,) be a diagonal matrix, where d; >0, i=1, 2, -+ n.
Then x solves the problem NCP(f) if and only if x solves NCP(D f).
Proposition 2.3 Let D =diag(d,, d,, -+, d,) be a diagonal matrix, where d, >0, i =1, 2,-, n.
Then x solves the problem NCP(f) if and only if there exists a fixed point of the map
P(x) =max{0, x -D f(x) }. (10)
2.3 A Krawczyk-like Interval Operator
Let f([x]) be an interval extension of f(x), and I be the n x n identity matrix. The Krawczyk interval
operator is defined by
K([2], ., D) =y -Df(y) +(I-D f([s1))([%] -y), (11)
where y is any fixed vector in the interval vector [ x]. Obviously, Krawczyk interval operator is an interval exten-
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sion of x -D f(x), i.e.

=D f(zx) ey-D f(y) +(I-D f([x]))([x] -y) Vxelx] (12)
In [5] Zhenyu Wang and Zuhe Shen introduce a Krawczyk-like interval operator
r([x],y, D) =max{0, y-D f(y) + (I-D f([x]))([x] -y)}. (13)

Theorem 2.4 (Invariant of fixed point) Let D =diag(d,,d,, -, d,) be a diagonal matrix, where d; >
0,i=1,2,+, n. And let y e [x], the interval operator I'({x], y, D) be defined as (13), x solves NCP
(f). Ifxe{x], then

xel([x], y, D)N[x].
Proof From the relations (10) and (12), we have
P(x) =max{0, x-D f(x)} eI'([x], vy, D) Vaxe[x].
So
x=max{0,x -D f(x)} e '([x], y, D).

Corollary 2.5 If I'([%], y, D) N[x] =, then in the rectangle [ x] there is no solution to the problem
NCP(f).

If A is an interval matrix and [ x] is an interval vector, Then

w(A([x] -m([«x]))) < | A | w([2]).

Theorem 2.6 Assume that for any M e f'([x]), M is diagonally dominant and the diagonal part D =
inv(diag(d,, d,, -+, d,)) of f(m([x])) satisfies d, >0, 1 <i<n. Then w(I'({x], m([x]), D)) <
w([«]). Furthermore, the strict inequality holds if M is strictly diagonally dominant for any Mef ([x]).

Proof By Theorem 3.4, one has

w(I([«], m([x]), D)<w(K([«], m([x]), D))
—w((T-D £ ([2]))([2] ~m([x]))) < | 1-D £ ([x]) [ w([z]),
where K([x], m([x]), D) is the Krawczyk operator. Let M = (m;),,, €f ([x]). since M is diagonally

dominant, i. e.
Z I ml<lmyl=d,i=1,2,-,n,
=i

one has

m..
il<1,

| I-DM| = masy

J#*

m;
which indicates that || I-D f([x]) || <1. So
w(I([x], m([%]), D) <w([x]).
Clearly, if the diagonally dominant condition is replaced by the strict diagonally dominant condition, the
strict inequality
w(I([x],m([«]),D) < w([x])
holds.
Obviously, f([x]) is the first order slope f{ x, z] of £.
2.4 Gauss-Seidel Interval Iteration

Krawezyk-Hansen interval iteration is defined by

K([2]) =y -g(y) + ZR([+D)([5] -y), i=1,2,n,
where g(y) =D f(y), R([«x]) =I-D f([x]).
Gauss-seidel interval iteration is defined by
H([x]) = yi —&(y) + ZR,,([x])(HI,([x]) _}’j) + Z{Ru([x])([x/] _yj), i=1,2,,n,
where g,(y) =D(;;f(9’(.‘)) ,0=1,2, n; H'}»([x]) =H]([x])ﬂ[x/] ,i=1,2,i-1.

Now, we prepare to use Krawczyk-like interval operator and Gauss-Seidel interval iterative method to solve
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the nonlinear complementarity problem. We introduce an interval iteration

(21, 5%, D¥) = max{0,y® ~DOSY) + 3 R([x]) (H([x]) =)

+ Y R([=1Y)([x] =yt i=1,2,n,
where ¥’ and D'¥ are chosen as follows
y® =m([2]"),
D™ =inv(diag(diag[m(f ([x]*)) 1)),
re= [ I-DPf([s19) 1l
H,([«]) =H([«])N[x],j=1,2,i-1,
R([x]") =1-DYr([x]").

3 Algorithm

If I'([x], y, D)N[x]#0, using Theorem 2.4, then we can conclude that if there exists a solution x in
[«] to the complementarity problem (1), thenx e I'([x], ¥,D) N[x]. So, an inclusion iterative method can
be derived from the theorem 2.4 to approximate the solutions to the complementarity problem (1).

Algoithm 3.1 Step 1: Select an n-dimensional interval vector [x]”.

Step 2; compute [ x] G0 = p([2]%, ym , D®Yyn [x]%.

Step 3: If [x]**" =@, then we can conclude that there is no solution to NCP(f) in the interval [x ]
and terminate the algorithm; If | m([x]™ ) -m([x]%*™V) || <107, then terminate the algorithm.

Otherwise, Let £ =k +1 and go to Step2.

(k)

Clearly, the algorithm will generate an inclusion monotone sequence [x]™* of interval vectors, i. .
[x]PClx]*" k=1,2, -,
so one can conclude that
LU CSFAU=IEY) k=1,2,,

since the interval extension f'( [x]) of f'(x) satisfies the inclusion monotonicity. From Proposition 2.1 to
Theorem 2. 4, it follows that the solution x to the complementarity problem (1) in [x]‘” is also in all [« ) for
k=1,2,---. And we further have the following result for the inclusion method.

Theorem 3.2 Assume that for any M ef ([x]), M is diagonally dominant matrics and the diagonal part
D =inv(diag(d,, d,, ***, d,)) of f(m([x])) satisfies d; >0, 1 <i<n. And if [x]® 0, k=1, 2, -,
andry= [ I-D@f([x]) || <1, then there is a unique solution x to the complementarity (1) in [x]‘®
and the following hold :

x e [x]%, where k = 1,2, -,
w([x]Y) < Moorw([x]™).

Thus, [x]™* converges at least linearly to the unique solution x in [x]®.

Proof From Theorem 2.4

xel([z]%, y*® DP)YN[x]®, k=1,2,--,

so the solution x is in all the interval [x]" by Algorithm 3. 1, where k=1, 2,---. We notice r, = || I -
DY ([x]™) || <1, just as the assumptions ry = || I -D”f ([x]) || <1, so the sequence [x] " conver-
ges to a point interval. Therefore, one can conclude that there is a unique solution to the complementarity prob-
lem (1) in the interval [x]®
that

. It remains to show that the second result holds. From Algorithm 3.1, it follows

w([x]") sw([x]*").
And from Theorem 2.6, one obtains
w(L([2]%, y*, DW)) <k([«]¥, y* ,D®) <r, jw([x]"*").
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Since r, <1, so the result follows.

4 Numerical Experiment

In this section, we give some example to interpret our algorithm.

Example 1 Considering the complementarity problem NCP(f), where

227 —x, +x, -1
ft=) =( -} +%} +3x, +2).
Then
4z, -1 1 4[x], -1 1
f(x)=( ~2x, 2x2+3)’f([x])=( -2[x], 2[xj2+3)’
Choose [x]” =([?09’ ’0‘1.211), we have y(o) =(1.05,0.1)7,

3.2 1 0.3125 0
f(ym))z(—z.l 3.2)’D(0)=( 0 0.3125)’
(2] =([0.9109;)1.0297])’ (2] :(0.9(303);
[x](z)2([0.9957;)1.0055]),m([x](z))z(l.O(())06);
[x](a)=[x](4)=([1.000061.0000])’m([x]m)=(1.O(())00).
m([x]™) is an approximate solution to the NCP(f).
Example 2 Considering the complementarity problem LCP(M, q) ;
x=0, (Mx +q) =0, x"(Mx +¢) =0,
where
21000 -1
1 2100 -1
M=i0 1 2 1 0],¢g=| -1
001 21 -1
0 0012 -1
Choose
[0, 1.0000]
[0, 0.5000]
[#]=][0,1.0000] |,
[0, 0.5000]
[0, 1.0000]
then
[0.2500, 0.5000] [0.5000, 0.5000]
[0, 0.3750] [0.0000, 0.0000]
[x]® ={[0.0625,0.6250] |, [x]®* =] [0.5000, 0.5000] |
[0, 0.4688] [0, 0.0000]
[0.2656, 0.6563] [0.5000, 0.5000]

m([x]%") is an approximate solution to the LCP(M ,q).
Example 3 Considering the complementarity problem NCP(f) , where
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®) =5x) +x, =2x, —x; +5
f(x) =| —x, +x) +x5 —14x, +2x, -23

~2x, —x, +3x% +4x, -6

[3,6]
Choose [x] =|[3, 5] |, we havey'” =(4.5,4,2.5)7,
[1,4]
23.5 -2 -1 0.0426 0 0
@)=l -1 450 2 [ D9=| o0 0.0222 0 |,
-2 -1 19.0 0 0 0.0526
[3.196 8, 6.0000] 4.598 4
[x]" =] [3.2933,4.6444] |, m([x]") =]3.9689 |;
[1.1019, 2.8892] 1.9956
[4.9975,5.0025] 5.0000
[x]® =[[3.9996, 4.0004] |, m([x]®) =|4.0000 |;
[1.9996, 2.0004 ] 2.0000

m([x]®) is an approximate solution to the NCP(f).

Remark 4.1 Above examples illustrate the convergence speed of Algorithm 3. 1 is twice as much as that of
Krawczyk-Hansen interval algorithm.

Remark 4.2 Choosing a rectangle [x] such that the solution x € [x] to the problem (1), we must find
the solution x by Algorithm 3. 1. But if we found out the range of the solution x of the complementarity problem,

it would be the best. This will be part of future research.
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