草菇 cDNA 削减文库的构建

李迅1,邵蔚蓝12

(1. 江南大学工业生物技术教育部重点实验室 214036 ,江苏 ,无锡) (2. 南京师范大学生命科学学院 210097 ,江苏 ,南京)

[摘要] 介绍一种改进的利用差异杂交和定向插入构建全长 cDNA 削减文库的方法. 分别以诱导和非诱导条件培养草菇菌丝 ,两者都提取总 RNA 并采用 PolyATtract mRNA Isolation System III 试剂盒快速提取 mRNA ,由 PowerScriptTM Reverse Transcriptase 将诱导菌丝提取的 mRNA 进一步逆转录成 cDNA 第一链 ,用得到的 cDNA 第一链和非诱导菌丝提取的 mRNA 进行杂交 ,将未杂交上的 cDNA 第一链洗脱浓缩后 ,用 SMARTTM cDNA Library Construction 试剂盒构建成草菇 cDNA 削减文库. 经检测 :原始文库滴度为 2.5 × 10⁵ pfu/mL ,重组率为 93% .插入 cDNA 大小在 0.5 ~ 4.0 kb 之间 ,文库扩增后 ,文库滴度为 1.1 × 10⁹ pfu/mL ,并从中克隆到了若干植物纤维降解酶. 结果表明其简化了实验步骤 ,而且更有利于富集所需全长基因 ,是构建 cDNA 文库的一种有效改进.

[关键词] 滴度 重组率 差异杂交 PCR

[中图分类号]Q522, [文献标识码]A, [文章编号]1001-4616(2005)04-0073-04

Construction of cDNA Subtractive Library of Volvariella Volvacea

Li Xun¹, Shao Weilan¹²

(1. The Key Laboratory of Industrial Biotechnology Under Ministry of Education , Southern Yangtze University , 214036 , Wuxi , China)

(2. School of Life Science , Nanjing Normal University , 210097 , Nanjing , China)

Abstract 'A modified method for cDNA subtractive library construction was introduced. We prepared the mycelia of *V. volvacea* under inducing conditions and no inducing conditions. Two kinds of mRNA of *V. volvacea* were extracted with PolyATtract mRNA Isolation System III Kit. The inducing mRNA was reverse-transcripted into single-strand cDNA with PowerScript[™] Reverse Transcriptase. Hybridization between the single – strand cDNA and no inducing mRNA was performed. After high stringency washing and purification and concentration , the cDNA subtractive library was constructed with SMART[™] cDNA Library Kit. The result revealed that the tilter of cDNA subtractive library was 2. 5×10^5 pfu/mL , that the amplified cDNA subtractive library was 1.1×10^9 pfu/mL , that the recombinant rate reached to 93% , and that the length of inserts ranged from 0. 5 kb to 4.0 kb. The results showed that this new method had an efficient improvement in constructing full-length cDNA subtractive library which simplified the experimental procedures and enriched more candidate genes.

Key words tilter, recombinant rate, subtractive hybridiazation, PCR

0 引言

草菇,又名麻菇、杆菇等,属真菌门,盛产于我国南方,具极高的营养价值,是世界上第五大重要的经济栽培品种^[12].草菇以植物废弃物为生长基质,拥有完整的植物纤维降解酶系,包括纤维素酶系和半纤维素酶系.草菇不合成有害物质,具有高度的安全性,对动植物无致病作用,并能减少植物废弃物造成的环境污染.草菇耐高温、抗污染、生物转化速度快,可进行大规模固态培养,有利于发展农村经济,因此草菇具有很高的研究价值.若能将草菇构建成基因高效表达体系,意义将更大,可以使草菇利用植物纤维生产重要

收稿日期:2005-02-26.

基金项目: 国家自然科学基金资助项目(30370034).

作者简介: 李迅, 女, 1975—, 博士研究生, 主要从事分子生物学的学习与研究. E-mail xunlee@163. com

通讯联系人:邵蔚蓝,女,1958— 教授,博士生导师,主要从事分子生物学的教学与研究. E-mail:wlshao@jsmail.com.cn

万方数据

的生物活性蛋白包括医用蛋白、单细胞蛋白和酶等,创造高经济效益. 有报道草菇的基因文库已构建 $^{(3)A}$ 7,但是没有有关 $_{
m cDNA}$ 文库构建的报道.

生物在不同的诱导条件下,产生的活性物质种类和数量都不同,其基因具有差异性的表达,本文利用诱导条件下产生的富含植物纤维降解酶系的 cDNA 与非诱导条件下产生的 mRNA 杂交 利用基因相减的方法构建一个 cDNA 削减文库,这个文库富集了植物纤维降解酶系的基因,同时减少了常规生长所需的基因。在进行差异杂交时,一般采用羟基磷灰石柱层析的方法和磁珠分离技术^[56],这些技术都存在操作复杂及不稳定等缺点,本文介绍了一种利用常规杂交方法实现基因的削减,同时采用 SMART 技术实现构建全长 cDNA 削减文库.

1 材料与方法

1.1 菌株和培养

草菇 V_{1-1} 由南京师范大学何强泰先生馈赠 将草菇接种于诱导和非诱导平板上 40% 培养 $4\,\mathrm{d}$,用铲子 刮取菌丝 ,分别投入液氮中备用.

草菇诱导培养基 10.2% CMC; 0.2% xylan; 0.2% KH₂PO₄; 0.2% (NH₄)₂SO₄; 0.1% MgSO₄; 2.5 mg/L VB₁; 1.5% 琼脂粉 pH 7.5. 草菇非诱导培养基 10.2% 葡萄糖; 0.2% KH₂PO₄; 0.2% (NH₄)₂SO₄; 0.1% MgSO₄; 2.5 mg/L VB₁; 1.5% 琼脂粉 pH 7.5.

1.2 主要试剂

试剂盒 SMART™ cDNA Library Construction Kit 和 Power Script™ Reverse Transcriptase 购自 Clontech 公司 ,试剂盒 PolyATtract mRNA Isolation System III 和 Packagene Lambda DNA Pac kaging System 购自 Promega 公司 ;Probest 酶、DNA 连接酶、pMD18-T 载体、DNA Marker 和各种限制性酶购自 Takara 生物技术公司 , IPTC(异丙基-β-D-半乳糖苷)、X-ga1(5-溴4-氯-3-吲哚-β-D-半乳糖苷)购自博彩生物公司 ;燕麦木聚糖 (xylan from oat spelt)为 Sigma 公司产品 ;Hybond – N + 尼龙膜购自 Amersham Pharmacia Biotech 公司 纯化 试剂盒 QIAquick PCR Purification Kit 质粒抽提 QIAprep Spin Plasmid Miniprep Kit 和 QIAquick Gel Extraction Kit 胶回收试剂盒购自 QIAGEN 公司 其它试剂为国产分析纯.

 $1 \times Lambda$ 稀释缓冲 :0.1 mol/L NaCl ;10 mmol/L MgSO $_4 \cdot 7H_2O$;35 mmol/L Tris-HCl (pH 7.5) ; 0.01% Gelatin.

其它溶液的配方参考相关文献[7].

1.3 草菇总 RNA 的提取及 mRNA 的纯化

总 RNA 的提取采用通过改进的异硫氰酸胍强变性剂法 $^{[8]}$ mRNA 的纯化采用 PolyaTract mRNA Isolation System III 提取的总 RNA 和 mRNA 通过测定 A_{260} 与 A_{280} 值及进行 1% 变性琼脂糖凝胶电泳来确定其纯度及浓度.

1.4 差异杂交

- (1)非诱导菌丝抽提的 mRNA 的变性
- $3 \sim 5~\mu g~mRNA~m$ 入 $5.5~\mu L~Z$ 醛 $\mu L~D$ 甲酰胺和 MOPS 缓冲液 ,在 65 ℃ 保温 15~min 使其变性 ,放至 冰上速冷 ,然后将 mRNA~ 变性样小心加至 Hybond-N+ 尼龙膜上 ,每次 $5~\mu L~$ 避免枪头接触膜 ,使膜风干 ,80 ℃ 烘烤 2~h~ 固定膜.
 - (2)经诱导的菌丝的 cDNA 第一链的合成

按 SMARTTM cDNA 文库构建试剂盒说明书完成 ,取 0.5 μg mRNA 为模板 ,以 SMART IV 寡核苷酸和 CDS III/3 ' PCR 引物 ,PowerScript 逆转录酶逆转录成 cDNA 第一链.

(3)差异杂交

将固定有 mRNA 的尼龙膜用 $100~\mu L$ 预杂交液在 42° 预杂交 3~h 吸出预杂交液 "加入 $100~\mu L$ 杂交液和 $10~\mu L$ cDNA 第一链和封闭剂 将合成的 cDNA 第一链与固定于膜上的 mRNA 在 50° 杂交大于 6~h ,用 $0.1\times SSC~0.1\%~SDS$ 在 68° 严紧型洗脱 ,收集洗脱液 经纯化试剂盒纯化和乙醇沉淀浓缩,使我们所需的酶的基因片段得到富集.

1.5 削减 cDNA 文库的构建

(1) LD-PCR

以杂交洗脱后回收的 cDNA 片段为模板 扩增双链 cDNA 扩增完毕后 \mathbb{R} 5 μ L 进行酸凝胶电泳 ,与试剂盒中的对照对比 ,确定其大致的量. 试剂盒中的对照取 1 μ L ,其他试剂都减半 ,扩增 15 个循环. 双链 cD-NA 以 Sfi I 限制性内切酶酶切 ,然后经 CHROMA SUN-400 柱分级分离 ,收集符合大小(> 0.5 kb)要求的 cDNA 片段. 将经 Sfi I 酶切后的双链 cDNA 按一定比例与 TriplEx2(经 Sfi I 酶切)载体连接.

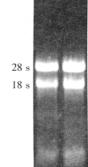
(2) DNA 与 λ 噬菌体载体连接、体外包装、感染和文库滴度的测定

将酶切后的双链 cDNA 按一定比例与 λ TriplEx2(经 Sfi I 酶切)载体在 16 $\mathbb C$ 连接过夜. 用噬菌体包装试剂盒包装连接产物成为噬菌体颗粒 (按照 Packagene Lambda DNA Packaging System 试剂盒说明书操作). 用 $1 \times \text{Lambda}$ 稀释缓冲进行梯度稀释包装液后 $\mathbb R$ $\mathbb R$

削减文库滴度 $(pfu/mL)=(噬菌斑数×稀释倍数×10^3 \mu L/mL)/C_{**6\pi}$ $\mu L/mL)/C_{**6\pi}$

(3)cDNA 削减 λ 噬菌体文库的扩增及扩增文库滴度的确定

将三个连接包装物混合,约有 $1500~\mu L$ ($3.75 \times 10^5~pfu$)进行文库扩增,同样按照文库滴度的测定方法进行扩增文库滴度的测定 梯度稀释至 10^{-5} ,涂布 $10~\mu L$,37% 培养过夜. 第二天计算噬菌斑数 ,得出噬菌体 cDNA 文库的滴度. 从扩增文库中随机挑取 12 个阳性噬菌体斑克隆 ,用试剂盒中通用引物 5'PCR 和 3'PCR 引物做 PCR 来扩增插入片段 ,反应产物以 1% 琼脂糖凝胶电泳分析 ,鉴定 cDNA 片段的插入大小.


(4)全长 cDNA 文库的检验

由于网上已有若干草菇纤维素酶和半纤维素酶基因序列已知 ,所以直接设计引物 ,以得到的 cDNA 削减 λ 噬菌体文库液为模板 ,进行 PCR ,电泳检测并将 PCR 产物从胶回收纯化后 ,与 TA 载体 pMD18-T 连接 ,电转化大肠杆菌 JM109 ,涂布蓝白平板 ,倒置 37℃过夜培养. 挑取白色菌落 培养后抽提质粒 ,酶切验证有大小正确的插入子后 进行 DNA 测序.

2 结果

2.1 草菇总 RNA 的提取及 mRNA 的纯化

以改进抽提方法对非诱导培养和诱导培养的草菇菌丝进行 RNA 抽提, A_{260}/A_{280} 分别为 2. 034 和 2. 035 ,浓度分别为 57. 36 $\mu g/mL$ 和 48. 68 $\mu g/mL$,各取 10 μL 用变性琼脂糖凝胶来检验 RNA 的完整性 ,条带亮度比例大约为 1. 5 ~ 2. 5: 1(见图 1). 根据所得的结果显示 ,这样获得的 RNA 样品纯度高,完整性好 ,满足下一步的 mRNA 的提取需要. 各取 1 mg 总 RNA 抽提草菇菌丝的 mRNA , A_{260}/A_{280} 分别为 1. 222 和 2. 035 ,浓度分别为 9. 48 $\mu g/mL$ 和 29. 44 $\mu g/mL$ 基本也满足后继的 cDNA 合成实验的需要.

2.2 差异杂交

非诱导培养草菇菌丝所提 mRNA 取约 3 µg ,进行变性和固定 ,而诱导培养草菇菌丝所提 mRNA 取 1 µg 进行 cDNA 第一链合成 ,取一半 cDNA 第一链 图 1 改进法抽提的 RNA 的电泳图样品与固定的 mRNA 杂交 ,将杂交液和洗脱液纯化 ,得到约 0. 4 µg.

2.3 草菇 cDNA 文库的构建

取纯化液 20 μ L (约 0.08 μ g)作模板 45 个循环 ,进行 LD-PCR 扩增 ,经 1% 琼脂糖凝胶电泳检测 ,合成的双链 cDNA 片段大小在 0.3 ~ 6.0 kb 之间(图 2). 经测定原始文库滴度为 2.5 × 10^5 pfu/mL ,重组率为 93% . 原始文库经扩增后 ,测定文库滴度为 1.1 × 10^9 pfu/mL. 随机挑取 12 个克隆经 PCR 鉴定 cDNA 插入片段大小 ,插入 cDNA 大小在 0.5 ~ 4.0 kb 之间(图 3).

2.4 全长 cDNA 文库的检验

通过 PCR 扩增 得到全长的葡聚糖酶、葡萄糖苷酶和木聚糖酶基因序列 ,采用序列分析软件 DAN-万方数据 — 75 — MAN、BIAST 与 NCBI 的数据库中已知基因进行同源性比较、分析. 结果显示 ,和公布的序列比对 ,发现葡聚糖酶和 β-葡萄糖苷酶与公布序列同源性分别达到 99. 5% 和 99. 8% ,差异基本上是由于菌株不同造成的 ,得到的序列阅读框 (ORF)完整.

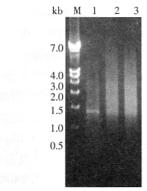


图 2 草菇双链 cDNA 1% 琼脂糖凝胶电泳

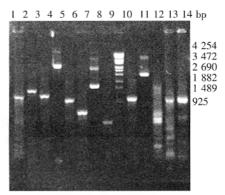


图 3 随机克隆 PCR 产物琼脂糖凝胶电泳分析

3 讨论

cDNA 文库的质量主要反映在文库的代表性和重组 cDNA 片段的序列完整性两个方面. 文库的代表性可用库容量来衡量. 本研究采用差异杂交和 SMART 技术成功构建的草菇 cDNA 削减文库 "原始文库含有 2.5×10^5 pfu/mL 个重组克隆 重组率达到 93% 以上 ,文库扩增后滴度达到 1.1×10^9 pfu/mL ,约为一般文库库容的 25% ,达到了缩小文库库容的基本要求. 随机挑取 12 个克隆 ,用 PCR 鉴定 cDNA 插入片段大小在 $0.5 \sim 4.0$ kb 之间 因此文库的代表性满足文库筛选的要求.

重组 cDNA 片段的完整性是反映 cDNA 文库质量的另一重要因素. 本研究采用 SMART(Swithing Mechanism at 5'end of RNA Transcript)技术 经 LD-PCR (long-distance PCR)合成双链 cDNA. 其主要优点在于:首先 提高了 cDNA 文库中所含全长 cDNA 的比例 ;其次 ,由于 LD-PCR 在合成 cDNA 中体现出来的优越性 ,只需极其少量的 mRNA(25 ng)或总 RNA(50 ng)就能构建 cDNA 文库 第三 ,合成的双链 cDNA 经 Sfi (IA 和 IB)酶切 ,连接到 λTriplEx2 载体的左右臂 ,从而实现 cDNA 的简便、快速的定向克隆. 同时在文库中克隆到完整的草菇纤维素酶和半纤维素酶基因 ,进一步验证了文库的序列完整性 ,也证实了文库具有完备的诱导酶系基因. 总之 ,这是一种改进的利用差异杂交和定向插入构建全长 cDNA 削减文库的方法 ,有利于富集所需基因 ,可以减少大量的筛选工作 ,是构建 cDNA 文库的一种有效改进.

[参考文献]

- [1] Cai Y J , Buswell J A , Chang S T. Production of cellulases and hemicellulases by the straw mushroom , *Volvariella volvacea* [J]. Mycol Res ,1994 ,98(6):1019—1024.
- [2] Cai Y J , Chapman S J , Buswell J A , et al. Production and distribution of endoglucanase , cellobiohydrolase , and β-glucosidase components of the cellulolytic system of *Volvariella volvacea* , the edible straw mushroom[J]. Appl Environ Microbiol , 1999 , 65(2):553—559.
- [3] Jia J, Dyer PS, Buswell JA, et al. Cloning of the cblI and cblII genes involved in cellulose utilization by the straw mush-room Volvariella volvaced J. Mol Gen Genet, 1999, 261(6):985—993.
- [4] 李南羿,姚占芳,陈明杰. 草菇噬菌体基因文库的构建[J]. 食用菌学报,2001,8(2):15—18.
- [5] Carninci P, Shibata Y, Hayatsu N, et al. Normaliazation and subtraction of cap-trapper selected cDNAs to prepare full-length cDNA libraries for rapid discovery of new genes J]. Genome Res, 2000, 10(10):1617—1630.
- [6] 孟祥文,李璞. 构建消减文库的方法与策略[J]. 国外医学遗传学分册,1994,17(3):131—134.
- [7] 萨姆布鲁克 J, 拉赛尔 D W. 分子克隆:实验指南 M]. 3 版. 北京:科学出版社, 2002.
- [8] 李迅 裴建军 邵蔚蓝. 担子菌草菇总 RNA 的快速抽提方法 J]. 微生物学通报 2004,31(4):81—84.

[责任编辑:孙德泉]