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Hamiltonicity and the Independent Sets
of Partially Square Graphs

Xu Xinping

( Department of Mathematics, Jiangsu Institute of Education, Nanjing 210013, China)

Abstract ; The partially square graph G* of G is a graph satisfying V(G* ) =V(G) and E(G* ) =E(G) U {uv: wv ¢
E(G), and J(u,v) #J|. In this paper, we will use the technique of the vertex insertion on k or (k + 1) -connected

(k=2) graphs to provide a unified proof for G to be hamiltonian, 1-hamiltonian or hamiltonian-connected. The suffi-
k

cient conditions are expressed by the inequality concerning z I N(Y;)) ! +b1 N(y) | and n(Y) in G for independent
=1

sets Y={xy,y,,",7} in G*, where b(0 <b<k+1) is an integer, ¥; = {y;,5;,_y,"",¥;_s-1y | E¥\ 5o} forie
{1,2,--,k} (the subscriptions of y';s will be taken modulo k), and n(Y) = | ftreV(G): dist(v,Y) <2} I.
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0 Introduction

In this paper, the terminology and notation not defined will follow [ 1], and we consider simple finite

graphs only. G will always stand for a graph. A cycle C of G is called a hamiltonian cycle if C is a spanning cy-

cle, and a path P of G is called a hamiltonian path if P is a spanning path. A graph G is called hamiltonian if

there exists a hamiltonian cycle in G. If G — {w} is hamiltonian for any w € V(G) , then G is 1-hamiltonian. G is

called hamiltonian-connected graph if there exists a hamiltonian path in G which starts at u, and ends at u, for
any {u,, u,| CV(G).

Let G be a graph, for any ue V(G), let N(u) denote the neighborhood of u and d(u) = IN(u) | be the
degree of u. For any UCV(G), let N(U) = MLEJUN(u). Let U and R be subgraphs of G(or subsets of V(G) ),
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Denote N,(U) =N(V) NR.
Sufficient conditions involving degrees of vertices have been playing very important roles in studying the

hamiltonicity of graphs.

Theorem 1/ Let G be a graph of order n=3. If the minimum degree §= =0 2 then G is hamiltonian.

Theorem 2*)  Let G be a graph of order n=3. If d(u) +d(v) =n for every pair of nonadjacent vertices
u and v, then G is hamiltonian.

Bondy improved and generalized Theorem 2 as follows.
k+1

Theorem 3™ Let G be a k-connected graph of order n=3. If Z d(z) > (k+1 2(n -1 for every in-
=1

dependent set Z = {z,,2,,**,z,,,} of G, then G is hamiltonian.
We give the following notation.
Let £ >1 be an integer. Denote
I(G) ={Y:Y is an independent set of G, Y| =¢].
Let G be connected, YCV(G), and ve V(G). Denote dist(v,Y) = rynsuyl {dist(v, y)} (where dist(v,y)

stands for the distance between v and y) ,
N.(Y) ={veV(G); dist(»,Y) =i} (i=0,1,2,--), and
n(Y) = INJ(Y)UN(Y)UN,(Y) | =1 {v e V(G) :dist(v,Y) <2} |.
Clearly, N(Y) =N,(Y), and n(Y) <|V(G)|. For each ie {0,1,2,:--,1YI}, denote
S,(Y) ={veV(G):IN(v) NYI =i}.
Forve V(G), denote N[v] =N(v) U {v}. Let {u,v} CV(G). Set
J(u,w) ={weN(u)NN(v); N(w) CN[u] UN[v]}.
The partially square graph G* [5] of G is a graph satisfying V(G ) =V(G) and E(G") =E(G) U {uv:
weE(G), and J(u,v) #B}.
In this paper, we will prove the following new results (Theorems 4 ~6) by using the vertex inserting lem-
mas introduced in [6]. In Theorems 4 ~6, we always assume that Y = {y,,y,,**,%:} €1,,,(G),
Y ={y,%. » s Yic(b-1) FCY\ {5, !
forie {1,2,-:+,k} (where the subscriptions of y';s will be taken modulo k).
Theorem 4 Let G be a k connected graph with k=2, b an integer and 0 <b<k+1. If

a',,(Y)_2IN(Y)I+bIN(yo)I>m1n{k “"}( () - 1)

in G for each YeI,,,(G" ), then G fs hamiltonian.
Theorem 5 Let G be a (k +1)-connected graph with k=2, b an integer, and 0 <b <k +1. If

’ 2 -1+k
o, (Y) = T INY) 1 +b1 N(y) | > minlk,%}n(Y)
i=1
in G for each YeI,,,(G" ), then G is 1-hamiltonian.

Theorem 6 Let G be a (k +1)-connected graph with k=3, b an integer, and 0 <b <k +1. If

: 2 -1+k
a,(Y) = X IN(Y) 1 +b1 N(y) | > min{k,T}n(Y)
i=1
in G for each Yel,,,(G" ), then G is hamiltonian-connected.

In Theorem 4, when b =1, we have the followmg result.

Corollary Let G be a k-connected graph with k=2. If Z | N(y,) | > —( (y)-1),

in G for each Y= {y,,y,,**,%.} €l,,,(G" ), then G is hamiltonian.
Clearly, Theorem 4 improves and generalizes Theorem 3, and Theorems 4 ~ 6 improve and generalize the
corresponding theorems in [5], respectively.
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Remark Let G, =K, , with k=2 and bipartition (Y,U), where 1Y| =k +1 and 1Ul =k. Clearly, G, is
a k-connected non-hamiltonian graph with |V(G,) | =2k +1. And we have I,,,(G; ) =1,,,(G,) ={Y}, n(Y)
=1V(G,) 1, and N(y) =U forany ye Y. Set Y=1{y,,,,*",¥x}. Thus when b=1,

o (V) =k(k+1) =%(k+l)(n(Y) -1) =2”‘2—1”‘<n(Y) -1).

Graph G, shows that the lower bound of Theorem 4 can not be improved, and in this sense Theorem 4 is best
possible.
1 The Basic Lemmas

P

In this section, we always assume that G is a connected non-hamiltonian graph and C is a maximal cycle of
G (i.e. , there is no cycle €' in G, such that V(C) CV(C’)), and H is a component of G - V(C). Assume
also {v,,v,,*,v,,} SN (H) and v, ,v,,+*,v,, occur on C in the order of their indices. The subscriptions of v';s
will be taken modulo m. If x € V(C), denote by x* and x~ the successor and the predecessor of x along the
orientation of C, respectively.

Foreachie {1,2,-,m}, a vertex u e C(v,,v,,,) is called insertible'®’ if there is some vertex w e
Clv;,,,v;) such that {w,w*} CN(u). Otherwise u is called non-insertible.

Lemma 1 LetueC(v,,v,,,) forsomeie {1,2,--,m}. If all vertices in C(v;,u) are insertible, then
ug N.(H). Therefore, there exists a vertex in C(v;,v,,,), which is non-insertible.

By Lemma 1, for each ie {1,2,--:,m|, let x; be the first non-insertible vertex in C(v,,v,,,).

Let X, = {%y,%,,"**,%,| , where x, is an arbitrary vertex of H. Set XC X,, such that x, € X, and |X| =k +

Ism+1. X\{x,} ={x ,xpk} (where 1 <p, <p, <*** <p,<m). For convenience, we always assume

pl’xpz""
that x, =x', and v, =1, forte {1,2,--,k}. Thus X = {a'y,5",,-,%",}, where x'y =x,. Denote J, =

lL:‘JIC[x',,v’M] , Ky =V(G)\Jy.
The subscriptions of x';s will be taken modulo k.
Lemma 2 X, el (G), Xel,, (G), KyCS,(X)US,(X), KyNNy(X) = {x'y}.
Lemma 3"’ X, el (G"), Therefore Xel,,,(G").
A segment C[z,,2,) (CC[%',,v",,,], te{1,2,--,k}) is called a CX-segment if
(i). €C(z,,5,) NS (X) =T, and
(ii). 2z, e N,(X) UX, z, e So(X) U {n,1,}.
A CX-segment C[z,,z,) is said to be simple if C(z,,z,) ©8,(X).
Lemma 4! Let C[z,,z,) (CC[x',,v',,,], te {1,2,--,k}) be a CX-segment. If L, =N(x';) N
C(z,2,) (ie{0,1,--+,k}), then
L,L_,,-,L,L,,L,_.,,L,,,L
(some of them may be empty) form consecutive subpaths of C(z,,z,) which can have only their endvertices in
common, and |L;1 <1 forie {0,1, -k} \{t}.
2b-1+k
2
2oy | (CX\{xg}) (forie 1,2, ,k}, and the subscriptions of x';s will be taken modulo k).

Let UCV(G). We always set

!

We always assume that b is an integer(0 <b<k+1), and " =min{k, bs X, ={a',x'_,,

k
o, (U,X) = S INX) NUI+bl N(xy) NUI;
i=1

k
(X)) = a,(V(6),X) = Y I N(X;) I +b1 N(x) I.
i=1
By the definition of o, (X), it is not difficult to check that the following Lemma holds.
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Lemma5 (1) fweS, (X)NN(z',), then o, ({w} ,X) =b=b-1+]I tq} 1.
(2) LetweSio(X)ﬁC[x',,v'“,]ﬂN(x'“)ﬂN(x'ﬂ)ﬂ'--ﬂN(x'qn) (iy=2), where
(t=)q, >¢, > >qi'0( >0)(k2)q."0+1 >t >q,,.
then
min{k,b-1+1{q ,q, -1,4 -2,,q,} 1} if weN(x,y)

X) <
7l 10 {min5k+b,2b—1+|3q“¢h—I,Qx‘2y""‘1io_”” ifweNCx)

where the ¢,,¢, -1,¢, =2, will be taken modulo £ and are not zero.
Lemmaé (1) o,(Ky,X) b(l Ky1 -1 —IlU2 (N(X) NKy 1)
(2) I C[z,5) CC[«',,v',,,] is a CX-segment, then 0, (Clz,),X) b" | Clz,z) 1,
and o, (Clz,,2,),X) = b(l Clz,,2,) 1 -1) <" | C[z,z,) | , when C[z,z,) is a simple CX-segment.

Proof Note that b° =min{k,2b—_21+—k} =b.

(1) By Lemma 2, K, ©S,(X) US,(X), and Ky NN, (X) = {x'y}. Thus by Lemma 5(1), we have
o, (Ky,X) = b(l Kyl =1 Ky N Ny(X) | —|[L>J2 (N(X) NKy) })
< b(l Kyl -1 —|1L>J2 (N(X) NKy) 1),

so (1) holds.
(2) By Lemma 4, we may assume C(z,,z,*) =N(2',) NC[z,2,), and C(z,,z',) €S, (X). Let W' =
C(z,2',), \W=h', W=C[2',,5,) ={w, ,w,,,w,}, (w;,w,, ,w, occur on C in the order of their indi-

ces), and w,eS, (X). Thus there exist x' () , 2’ 4 ,--~,x’q(,-)(i.21) such that w; e L'/JN(x’q;,)). By Lemma 4,
>q? > > >qP > 57 > g7 > > (>0,
k=)l > >q) > > > q“" > > g,
| C(z,,2,) N N(x) 1 <1, andw, e N(x,) if | C(z,,z,) N N(x,) | = 1. Seth, =i WN S (X) |, and
h, =h -h,. Thus| C[z,,z,) | =h'"+h+1 =h'"+h +h, +1,andh, <k.

Note that C[z, ,z,) is a simple CX-segment if and only if h, =0. Thus if C[z,,z,) is a simple CX-segment,
then by Lemma 5(1),

0,(Clz,,2,),X) =b(h +h) =bl C(2),z,) 1 =b(l C[z,z) ! -1).

Therefore we may assume that C[z,,z,) is not a simple CX-segment, so h70.

If 21)——1-+—k>k, then by Lemma 5, it is not difficult to see that

2
o,(Clz,,2,) ,X) <khy +b(hy + ') +b<k(h, +h, +h' +1) =kl Clz,,5,) I

If = 2b-1+k <k, then by Lemma 5, it is not difficult to see that

2

(1) (2) (2)

(1)
> e > q;,

(t=2)g" > g5

0,(Cl2,2,) ,X) < (h(b=1) +b+k) +bh' = bh' + (b +1)(b 1 +”§:})

<B=lrbanan szi‘—zlﬂl Clzz) 1,

Thus (2) holds.
Lemma?7 o,(X)<b"(n(X)-1).
k
Proof Consider X = {x',,x’,,*,2’,} and J, = L_JlC[x’,,v’,”]. Forte {1,2,-:-,k} , partition
C[x',,v',H]\U(N (X)NC[x',,v',,,]) into s, CX-segments
C[’-ﬁ) rzu) ), C[’-;;) ’ZZZ ,C[ ,(,;) ,zs(,;)

By Lemma 6, we have

St

o (Cla'0'n 1, X) = o (Cla,a),X) < b 2 | €Lz ,2) |
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< b7 (1 Cl#, 0" 11 =LY (NCO N CLa 0 D 1.

k
Note that J, = UlC[x'l,v',“]. Thus
1=
k

Ub(JX’X)

2 o (Cla 0 1,X) < 3 b7 (1 Cla', 0, ] 1 =1 U (N(X) N CL 0" 1) 1)
t=1 >

P
b (1 Jx 1 =1 U (N(X) N To) 1).
Note that V(G) =J,UK,, and b<b*. So by Lemma 6(1), we have

a,(X) = 0,(Jx,X) +0,(Ky,X)
b (1 Jyl —|lL>JZ(N,(X) NJ) 1) +b6(1 Kl -1 —III;JZ(N,(X) NKH1)
b (1 Jil —IIEJZ(N,(X) NJy) I+ Kyl -1 —IIEJ2 (N(X) NKy) 1)
=b" (I V(G)\ll;JzN’(X) I-1) =b"(n(X) - 1).

2 Proofs of the Theorems

Proof of Theorem 4 By reduction to absurdity. Suppose that G is non-hamiltonian. Since G is a k-con-
nected graph with k=2, we may choose a longest cycle C of G, a component H of G- V(C), and {v,,v,,"",
v,} CN,(H). Suppose that v, ,v,,*-,, occur on C in the order of their indices. By Lemma 1, for each i e {1,
2,-+,k}, choose x, the first non — insertible vertex in C(v;,v;,,). Pick up an arbitrary x, € V(H) and let X =
{29321, b, X =dm,2 0, %oy | (S X\ %)) (forie {1,2,++,k}, and the subscriptions of x';s

will be taken modulo k). Lemma 7 shows that
k

oy (X) = Y I N(X) 1 +bl N(xy) I <b"(n(X) -1) .

=1
On the other hand, Lemma 3 indicates that Xe I,,,(G" ), a contradiction.

The following lemma and the proofs of the following theorems will involve a graph G’ other than G. In order
to distinguish the notations such as N(U), n(X), o,(X) introduced for G, we will simply add a prime to the
notations with respect to G'. For example, N'(U), n'(X), o', (X) ete.

Proof of Theorem 5 By reduction to absurdity. Suppose that there exists some w € V(G) such that G’ =
G - {w} is non-hamiltonian. Choose a cycle C of G’ such that

(i) IN':(w)! is maximum; (ii) subject to (i), C is maximal.

Let H be a component of G’ - V(C), and N'.(H) = {v,,v,,**,v,,| with the convention that v, ,v,,*-*,v,, occur

on C in the order of their indices. Let x; be the first non-insertible vertex in C(v;,v,,,) for each ie {1,2,,

m}. Let X, = {x,,%,,-**,%,}| , where x, is an arbitrary vertex of H. By the proof of Theorem 9 in [7], there is

XCX,, such that x,c X and Xe[,,,(G").

2b-1+k
2

On the other hand, note that b* =min{k, | =b; and

o (fw,X) = 3 1 N(X) 0wl 1+b1 N(xp) 0wl 1< (k+b)E<2b"¢,

where ¢ =0 if we S,(X), otherwise ¢ =1. Clearly, n'(X) <n(X) -¢. Thus by Lemma 7, we have
K

k
DUNX)T+b1IN(x) 1< Y IN(X) 1 +b1 N'(x) 1 +2b7¢

i=1

o, (X)

o (X)) +2b7E<b " (n'(X) =1) +267¢<b"(n(X) ~€-1+2¢) <b"n(X),
a contradiction.
By the proof of Theorem 10 in [7], we have the following Lemma.
Lemma 8 Assume that G is a (k +1)-connected graph with k=3, and there is some {u,,u,} CV(G), G
contains no (u,,u, )-hamiltonian-path. Assume that there exists a (u,,u,)-path P such that
(i) V(P) 2N(u;) ;
— 10 —
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(ii) subject to (i), INp,(u,)| is maximum;

(iii) subject to (1), (ii), P is maximal.

Let H be a component of G — V(P). Denote by G’ the resulting graph obtained from G by adding a new vertex w
and two new edges u,w, u,w. Then

(1) InG', C=P[u,,u,]wy, is a maximal cycle ( choose the orientation of C that is the same as the orien-
tation of P), but not hamiltonian cycle of G’. Let H be a component of G' - V(C).

(2) Let {v,,v,,*,v,} =N'.(H) =N,(H). Then v,, #u,, and there exists the first non-insertible vertex
%,in C(v;,v,,,) forie {1,2,:-,m}, where m=k +1=4; X,, = {%,,%,,"*,%,} €l,,,((G') "), where x, is
arbitrarily chosen in V(H).

(3) There exists XCX,,, such that x, e X and XeI,,,(G").

Proof of Theorem 6 Suppose that graph G is not hamiltonian-connected. Then there is some {u,,u,| C
V(G), G contains no (u,,u,)-hamiltonian-path. By Theorem 5, there is a hamiltonian cycle C’ in G - u,.
Choose an orientation of C'. Let C'(u',,u,) NN(u,) = and u’, e N(u,). The (u,,u,)-path C'[u, ,u’,]u,
contains the set N(u,). Thus one can choose a (u,,u,)-path P such that

(i) V(P) 2N(u,);

(ii) subject to (i), INp(u,) | is maximum;

(iii) subject to (i), (ii), P is maximal.
Let H be a component of G - V(P). Add a new vertex w and two new edges u,w, u,w to G and denote by G’ the
resulting graph. By Lemma 8(1), C =P[u,,u, Jwu, is a maximal cycle in G’ ( choose the orientation of C agree
with that of P), but not hamiltonian cycle of G’ ; H is a component of G’ - V(C). Let {v,,v,,*,v,,} =N'(H)
=N,(H). By Lemma 8(2), v, #u,, there exists the first non-insertible vertex x, in C(v,,v,,,) forie {1,2,
«o,m}, where m=k +1=4. Let X,, = {xy,%,,*,%,}1 €I,,,((G')"), where %, is arbitrarily chosen in
V(H). By Lemma 8(3), there exists XCX,,, such that x, e X and Xe/,,,(G").

On the other hand, by the construction of G', n'(X) <n(X) +1. Thus by Lemma 7, it is easy to see that

o, (X) i I N(X) | +b1 N(xp) | < i | N'(X) 1 +b1 N'(x,) |

o, (X)) <b " (n(X) -1) <b"n(X),

a contradiction.
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