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0 Introduction

Let G Z D denote the graph with the set Z of integers as vertex set and with an edge joining two vertices u

and v if and only if lu —vl € D. Such a graph G Z D is called integer distance graph or simply distance graph
with a distance set D . Distance graphs first studied by Eggleton et. al. 1  were motivated by the well-

known plane-coloring problem what is the minimum number of colors needed to color all points of a Euclidean
plane so that points at unit distance are colored with different colors This problem is equivalent to determining
the chromatic number of the distance graph G R> 1 . Tt is well known that the chromatic number of the dis-
tance graph is between 4 and 7. However the exact number of colors needed remains unknown.

Let k and d be positive integers such that k=2d. A k d -coloring of a graph G= V E is a mapping ¢
V Z,= 012 k-1 suchthat lc u —c¢ v |,=d for each edge uwve E where lx|, =min Ix| k-
x| . Infact it is the generalization of an ordinary k-coloring of G which is justa % 1 -coloring. The circular
chromatic number also called star-chromatic number of G is defined as

xX. G =inf k/d Ghasa £k d -coloring .
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For a real number x denote by || x| the distance from x to the nearest integer let || tX || =inf | x| xe

X andletk X =sup | tX| teR then we know thaty, G Z X < see 2

k X

Another generalization of the ordinary coloring is the fractional coloring. A mapping ¢ from the collection ¢

of independent sets of a graph G to the interval 0 1 is a fractional-coloring if z ¢ S =1 for every vertex
Sep xeS

x of G. The value of a fractional-coloring ¢ is Z ¢ S . The fractional — chromatic number y, G is the mini-
See

mum of the values of fractional colorings of G. It is clear from the definitions thaty, ¢ <y, ¢ <y G . Fora
graph G which satisfies y, G =y, G  we call it star-extremal.

The chromatic number y D of the distance graph G Z D has been completely determined when 1D <3.
But there are a few far from complete results about the chromatic numbers of the distance graphs when |D| =

4. Some conclusions were given in 3 4 5 . For further related information see 6 7 .
1 Main Theorem

In 8  using the method of graph theory Xu and Song determined the circular chromatic number y, D
and fractional chromatic number y, D of the distance graph G Z D for special 4-elements distance set D =
aba+b?2 a+b . In this paper using the method of number theory we give a new proof of this result
Theorem see 8§ Suppose D= a b a+b 2 a+b 0O0<a<b ged a b =1

i fb-a=3k theny, D =x, D =x D =3.
ii Ifb-a=3k+1 theny, D =y, D =3+1/ a+k x D =4.
iii Ifb-a=3k+2 theny, D =y, D =3+1/ a+2k+1 x D =4.

c

Lemmal see 9 LetO<A $% be a real number and a, a, a, be n positive real numbers. The

following statements are equivalent

A There exist n integers k, k, k, such that
ak—ak,< 1-A a;-Aq, iogj=12 n.
B There is a real number x such that each ||ax || =A =1 2 n.
Lemma 2  Theorem 1 ¢ 9 For any three positive integers a, <a, <a, such that ged a, a, a; =1.

If a; =a, +a, then there exist three integers k, k, k; such that

ak,—ak,< 1-X a-da; 1 j=123

where
% a, —a, =3k
El S T a, —a, =3k +1

E#—L I a, —a, =3k +2.

u

Lemma 3 see 10 Suppose D= a b a+b 0O0<a<b ged a b =1.

i Ifb-a=3k theny, D =x, D =x D =3.

i fb-a=3k+1 theny, D =y, D =3+1/ a+k x D =4.

iii Ifb-a=3k+2 theny, D =y, D =3+1/ a+2k+1 x D =4.

Lemma 4 Suppose a, a, a; a, are four positive integers such that ¢, <a, a; =a, +a, a, =2a; and
ged a, a, =1 then there exist four integers k, k, k; k, such that

ak —ak,< 1-X a;-Aq, i j=1234

where

— 10 —
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E% a, —a, =3k
B 1o
i —a, =3k+1
A=03 3 a, +a, a4 —a, =3k +
ad
1 1 1
- -a, = 2.
% 3 a, +a, @ —a, =3k +
Proof For any two integers m n let
T Bk R O
A=m+ ) r=n >
Since ged a, a, =1 there exist two integers m, m, such that

am, —a,m, =m.
Let
ky=n+m; +m, k =m, k,=m,.

Then we have
a, —ay
A+arr=ak; —ak + > 1

a, ~ a,
—-A+a,r =aky —azk, + > 2

From the proof of Lemma 2 we know

Case 1. a, —a, =3k. In this case A= % and r = % there exist the corresponding three integers k, k, k,

such that

ak —ak,< 1-X a -2Aq )\=% i j=12 3.

Put k, =2k, then by 1 2 we have
a, —a, 4 2

ak, —ak, =2 ayky —ak, =2 A+a;r- > =306 -3
a, —as 4
ak, —ak, =2 ayky —ask, =2 —-A+a,r- 2 =30 =53
When A :;* it is easy to obtain that
1 2 4
Aa, — 1 -2 @y =3y = oy <3y =y < 5y =5y = 1-A a,—-A g
1 2 4 2
Aa, — 1=\ a2:?a4—?a2<?a3—?a2<?a4—?a2= 1-X a,-Aa,
Aa,— 1-A a —La -—a, =0=ak, —a,k <£a —La = 1-A a,-Aa
4 3530 Ty U S a5k magky <Ay = ras = 4 3¢

Thus we have k, k, k; k, such that
1

T iJ=1234

ak —ak,< 1-X aj—da; A=

Case 2. a, —a, =3k +1. In this case Azk-zi-1

1 . . .
and r =— there exist the corresponding three integers k,

k, ks such that
1 1 1

-— 1 j=123.
3 3a,+a3LJ 3

ak —ak,< 1-X aj—da;, A=
Put k, =2k, then by 1 2 we have

ak, —ak, =2 ayky —ak, =2 A+a1r—a1;a3 2%03—%01"'%
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ak, —ak, =2 ayk; —ask, =2 —A+azr—a2_a3 % ; 2 2

2

1 1 1
When)\—3 _3a]+a3

it is easy to obtain that

4 2 2

Aay,— 1 -2 a1<?a3—?al+?< 1-A a, -Aq,
4 2

Aa, — 1 - a2<?a3—?a2—? 1-A a, —Aa,

Aay,— 1-A ay;<0=a3k, —a,ky;< 1 -A a, - Aa,.
Thus we have k, k, k; k, such that
1 1 1

ak, —ak,< 1-X a -2Aq A:?_?% ra,

i j=1234.

Case 3. a, —a, =3k +2. In this case A = % and r = % there exist the corresponding three integers k,

1 1
k—ak< 1- —Aa A =— -
k, ky such that a.k; —ak, 1-X a;-Aa; A 3 3a,+a,

i j=123.

Put k, =2k, then by 1 2 we have

ak, —ak, =2 ayky; —ask, =2 A+a1r—al_a3 :% 2 2

2 “T3h Ty
ak, —ak, =2 ayky —ask, =2 —A+c¢2r—a22;a3 =§a3—%a2+%.

11 1

h o1 r . 0 th
When A 3 734, 4a, it is easy to obtain that
4 2 2
Aay, - 1 -2 al<?a3—?al—?< 1-A a, - Aq,
4 2 2
Aay,— 1-X a, <?a3—?a2 +?< 1-A a, —Aa,

Aa,— 1= a;<0=a3k, —a,k; < 1 =X a, —Aa,.
Thus we have k, k, k; k, such that
1 1 1

ko —a.k < - .- . =— ——
ak —ak,< 1-X a —Aa; A 3 34 +a,

i j=1234.

This completes the proof of Lemma 4.
Remark If we replace the above condition @, =2a, by a, =na; n##2  then the result may not hold. For

example a;, =1 a,=4 a;=5 a, =15. If the above result holds then there exist four integers k, k, k; k,

such that
ak —ak,< 1-X a -2Aq )\:% i j=123 4

Thus we have

1<k, -5k, <3 ?sl@l — 15k, s23—9 %s4k4 - 15k2s23—6 %s5k4 —15k3s2?5.

Thus
ky =5k +1 5k +2 5k +3
ky, =15k, +5 15k, +6 15k, +9
4k, - 15k, =3 4 8
ky =3k +1 =15k, +4 15k, +7 15k, +10.

By 4 6  we have k, =15k, +7.

By 5 we have 15k, =4k, -j=4 15k, +7 -j =60k, +28 -5 j=3 8. Thus 15k, =60k, +25
60k, +24 60k, +20 then k, ¢ Z a contradiction.
— 12 —
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Proof of Theorem Since the graph G Z a b a+b is a subgraph of distance graph G Z a b a +

b2 a+b we have the inequalityy, a b a+b <y, aba+b?2 a+b . Thus by Lemma 3 we
have
3 b-a=3k
X, aba+b?2 a+bd =(3+1/ a+k b-a=3k+1 7
3+1/ a+2k+1 b—-a=3k+2.
By Lemma 1 we have k D =A. By Lemma 4 and the fact thaty, ¢ Z D < lD 2 we have
K
3 b-a=3k
X. aba+b?2 a+bd <(3+1/ a+k b-a=3k+1 8

3+1/ a+2k+1 b-a=3k+2.
Therefore the chromatic numbers of the distance graph G Z D are given

i fb-a=3k theny, D =x. D =x D =3.
ii Ifb-a=3k+1 theny, D =y, D =3+1/ a+k x D =4.
iii Ifb-a=3k+2 theny, D =y, D =3+1/ a+2k+1 x D =4.
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