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Abstract: In thispaper, the cascadic multigrid method for mortar-type rotated Q, element isdiscussed It isproved that
the cascadic conjugate gradinet method is optimal and the cascadic multigrid method with traditional iteration is nearly
optimal Numerical results confitm our theoretical analysis

Key words mortar elament, rotated Q, element, cascadic multigrid method

CLC number 0242 21 Document code A  Article ID 1001-4616 (2007) 04-0020-08

M or tar Q.
1 2 2
(1 , 210037)
(2 , 210097)
[ ] mortar Q
[ 1 mortar Q.

0 Introduction

The rotated Q, element is an mportant nonconfoming quadrilateral elenent Itwasfirst proposed and anar
lyzed in[1] for Stokesproblens Recently there are many papers o deal with the -called mortar elanentmeth-
od*. In[3], amortar-type rotated Q, elenentmethod wasproposed, and the optimal error estimate in energy
nom was obtained

The cascadic multigrid method'® isa new kind of multigrid method Campared with usual multigrid meth-
ods, it requiresno coarse grid correction at all and may be vieved asd’ oneway” multigrid method The general
franevork t analyze the cascadic multigrid method wasproposed in [6] . For second order elliptic problem dis
cretized by mortar-type rotated Q, element, we proved that theW -cycle multigrid method isoptimal, and that a
variableV -cycle multigrid algorithm ispresentedm. In thispgper, we consider the cascadic multigrid method for
the discrete problem.

1 TheMortar-Type Rotated Q, ElamentM ethod

For smplicity, we consider the followving model problem
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{Auzf inQ
(11

u=0 on &,
whereQ C R’ is a rectangular domain, f L* @). There is no difficulty © extend the results in this pgper ©
more general second order elliptic problans
The variational form of (1 1) isto findu H," @) such that
a(u,v) =(f,v), Vv H' Q), (12
where the bilinear fom a(u, v) =fo Vu- v vdx By asamption, itiswell - known thatforany f L> Q) there
isa unique olution u H,' @) N H* Q) of (1 2), which satisfied ull, <l ™.

fa— N —
In thispaper, the damainQ is divided inio N non-overlgpping rectangular subdamains, Q :k:le, where

Q. 051 isempty, or a vertex, or an edge for i# j The interfacel’ =k’11&2k \& isbroken intb a st of digoint
open straight segmentsy , (1< m< M) (that is the edgesof subdamains) called mortars W e denote the canmon
open edge ©Q; andQ; byy ,,. ByY ., we denote an edge ofQ, and call itmortar and byd,,, an edge ofQ; that
geametrically occupies the sane place asy ,,(; and is called normortar

W ith eachQ, we as®ciate a quasi-unifom partition T, made of elaments that are rectangleswhose edges
are parallel o x-axisor y-axis The mesh parameter h, is the diameter of the largest elanent in Thk. LetT, =

N
k_lThk with h = max h, and asame that

max h;
1< i< N

Jdo >0, wch that™——
minh

1€ N I

<0. (13

For each partition T,*, the mtated Q, element ace is defined by
ViQ) ={v UQ)l vl =a +ax+ay+a(-y), a R
NLv|mds: 0VE T.'Q);forE,E T,“Q,), ifdE,n OB =e

E

o
then !/hads = -Ef/|aE2ds}.

N
V, = J__JVE ={% ¥ =%l VWWQJ)}.
For any interfaceY , =Y m(y =Om(),» 1< m< M, there are wo different and independent 1 - D partitions
T &) ad T, @n ). An auxiliary test paceM,, @,y ) isdefined by
M, @ny) ={v L?®n ) |vispiecavise constant on elenentsof the normortar partition T, @, ) }.
The dimension of M, @, ) isequal o the number of elenentsond,, ;.

Let

L? ¥n) =M, @m(j))

For each normortar edged,, ) , we define al’ -orthogonal projection operator Qs ,

by
(Qh,esm(D V’W)Lz@m(p) = (v, W)LZ(ém(D) ) Vw My (am(j) ). (1 4)
where (- , - )iz, denotestheL” inner product over the pacel” @, ).
For the projection operaor Qs , , We have
Lenmal1® Hu H"@,;), then
Iu- Qnd u||015m(j) < hj”2 [Ulnirze,, ;) -
W e nowv define the folloving mortar-type rotated Q, element ace
Vi ={V Vil Qusy Wlsyy) = Qusng (Vi) fOr W =3, CT 1
The condition of the equality of the L -orthogonal projection of traces onto the test gpace for each interface is
called mortar condition
Define
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N
a, (U, ) = Z JVUE- vvdx, Vu,¥ Vi anda,(u,w) = Zaﬁ(uh,w), Vi, v V.
E &k

Then we denote

N
e = d 0L W), Y Vi and [ w i = 5 Tw e Vv
The mortar-type rotated Q, element goproximation of problem (1 2) ist find u, V, such that
a (wm,w) =(fFw), Vv V. (15
Let T,," be the partition which is constructed by connecting midpoints of the opposite edges of elements of
T, Wy Q) be piecavise bilinear confoming elenent pace defined on T
Asin [3], we introduce a local operatorM : VEQ,) - W, Q,), and has the following properties
Lemmal 2 Forany ViQ,), we have
T S MO T S TV Tk (1 6)
"VE -M k‘i”LZ(E)Sht/ZWHh.kv (l 7)
where€ is an edge of Q.
The follonving error estmate can be found in [3].

Theoran 1 1 Letu, u, be the olutionsof (1 2) and (1 5) regpectively, then

N

|u-uh|ﬁszhi|u|§,gk. (1 8)

2 Error Estimate in L>Nom

Consider the followving auxiliary problem: find@ Hs Q) such that

-AQ = inQ ,
¢ =g (2 1)
¢ =0 on &,
whereg L> Q). Obviously, the problen (2 1) al® has the correponding H> -regularity
lol, <l gl,. (2 2)

In order o get the error estimate in L?-nom, we first give the following lenmaswhose proof is smilar ©
Lemma3 3 andLenma3 4 in [9] sparately.

Lanma 2 1 Asame thatu, u, and@ are the lutionsof (1 2), (1 5) and (2 1) repectively Then
we have

BBN (RS EL TAFS @9

where n is the unit outeward nomal vector along oE
Lenma 2 2 Asame thatu, u, and@ are the lutionsof (1 2), (1 5) and (2 1) repectively Then
we have

N
|55 frwe - vo o< Fldld, (2 4

Now, byLemmas2 1 2 2, we get the main result of this section
Theorem 2 1 Letu, u, be the olutionsof (1 2) and (1 5) regpectively Then
Tu-ules w2l (2 5)

3 Cascadic M ultigrid M ethod

Let T, be the coarsest partition ofQ2. We refine T, to produce T, by glitting each rectangle of T, into four
rectangles by jointing the opposite midpoints of the edges of the rectangle The partition T, is quasi-unifom of
size h, =h, /2 Repeating thisprocess, we get a ssquence of partitionsT,, 1=1,2, ,L, each quasi-unifom of



Huang Peiqi, et al: Cascadic M ultigrid M ethod for Mortar-Type Rotated Q, Element

sizeh =h, /2", and denoteV, as the mortar-type rotated Q, elanent gace over the partition T, Obviously, we
haveV, €V, & ¢V,

If we change the index h in sction 1 © be |, then the discrete problem of (1 2) onV, isto find u  V,
uch that

a (u,v) = (fv), Vv V. (31

In this section, we goply the franework developed in [6] 1o prove the convergence of our cascadic multig-
rid Before giving the algorittims, we define a auitable intergrid trander operator for the nonnested paces First
we define an operatd 1\ Vi, - Vi, VV Vi, by

0 eC 8, n &,
I_il J/kds eC N\,
1 k k
— (v)ds = (3 2
IeIiF' —1de e¢ OE, E TS,
| el
2lle| J(vk le, +V |g,)ds eC OB, n 06, E, E  T.."
where eC 0E, E T
Basd on the operator 1 ¥ we define an trander operabi1 :V,., -V, asfollons
I-IIV:d-llevlyrllzvzy 1|-|,I\‘\}\‘)l VV:(V:leza 1\|/\‘) \Z-l'
Define the operator= 5, :V, -V, by
; Bnt vds = J.Ql,ém“) (V|ym(i) - V|5m(j) )ds e T, @m(j))u (2 3)

0 othemwisg
M

whereeC OE, E T. Thenforanyv V,, stv = v+ WZE By (W), we can check that vt

After the above preparation, we can define an intergrid trander operator I:V,., -V, For any v V.., let

I|V=|—||V"'"ZlE |,6m(j)a-||V)- (3 4)

Let{®]i=12 ,N,} be the basisof V. By the operabr= s
the fom

n the basisof V, consistsof functions of

¢ =9 D I (#). (3 5)

From the above definition, we can see that there exist o kindsof basis function of paceV,: (a) ¢} and
&, at all edgeswhich are not in the interior of are the same Denote the et of this kind of basis functions by
®, ={®}; (b) ¢ atall edgeswhich are in the interior of each mortar edgeY .y CI' are defined by (3 5).
Denote the et of this kind of basis functions by®r ={ ¢,}.

Let <- ,- > be the Euclidean scalar product of the nodal basis in the finite elanent paceV, and denote

the induced nom by I \,”Qd =V <v, v>. We define the operator A: V, -V, by
<Au,v>=a(uv), Vuv V,

which is represented in the basis by the stiffnessmatrix

Followving [6], we introduce a pojection operator P,:V,., +V, -V, defined by

a(Puv) =a(uyv), Vv V.,
Fram the definition, it iseasily sen that
[Pv]i< V]2, VvV Vi (3 6)

W e use the operator C™': V, -V, © denote m, stepsof iterations such as Gauss-Seidel, conjugate gradient

method applied on level | The cascadic multigrid method can be written as follovs
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Casadic multigr id algor ithm
(1) Sety =u,.

(2) Perfom iterations, 1=2, L.

wo=hu,, d =M.
(3) Setuy =u'".
Follonving [ 5], we call a cascadic multigrid optmal in the energy nom on the level L, if we obtain both the
accuracy |u - u [= |u-u |, and themultigrid camplexity anountof work =0 (n ), n =dm(Vv.). If the
multigrid complexity isO (n_log n ) ,whered isa fixed integer, the cascadic multigrid is nearly optimal

Shi and Xu® gave three hypothesis tb guarantee the convergence of the cascadic multigrid method
H1 For the intergrid trander operator |, we assume that

(1) "V' ||\I”0Sh|lvl|_l, VV V|_1. (2) " U| - I|U|_1||0§h|2|| f”o
where u, is the mortar-type finite elenent lution of (3 1) onVv,,

H2 Asamethatu - C™u =S™ (u - ) with a linear mapping S™': V, -V, for the error propagation
and forany vV,

h-1
IS"vl s—5 Iy, 1S™v] < (vl
m

whereY is a positive number depending on the given iteration
H3 For the operator P,, we asame that

||V' P|\/”0Sh||V||_1, VV V|_1.

Lenma 3 1 H1 holds for the mortar-type rotated Q, elenent gace
Pr oof

H1- (1) hasbeen obtained in [7]. Herewe only need to prove H1 - (2) isal® valid
From the triangle inequality, we get

M
" U| = I|U|_1||0 S " U| 'I-I |U|_1||0 +WZ"E Bm(j) d-l |U|_1)||0-
Using the smilar argument inLemma 3 3 in [10] and Theoran 2 1, the first tetm can be estmated

[INTR TIPS (38
By means of nom equivalence and the Schwarz inequality, we can derive

”E 3m() d_l |U|-1)”02 S h'"Ql,ém(D M., |vm(i) -Musy s

(37

2
m () ) ”Qym s
h ”QI,Em(D (1 u., Ny = U |Vm(i))||gv6m(1) + Qizy (u (VI
" QI,Bm(D (u |5m<p M, |6m(J) ) ”2

03m ()
Fran the stability of the operator Qs
have

-y |6m(1))||g,6m(p +

(39

n » the trace theorem, the inverse inequality and the mortar condition, we

"E Bm() ( |U|.1)”0 s ” w -l |U|-1||o,Qi ay

(3 10)
Cambining (3 7) (3 10), we get H1 - (2).

Lenma 3 2 (1) Richardon, Jacobi and Gauss-Seidel iterations are snoothers in the snse of H2 with
paranetery =1/2

(2) H2 holds for the conjugate gradient iteration withy =1

Proof (1) wasshown in [11], novweprove (2) isvalid Fram Theoram 2 2 in [5], for the conjugate
gradient method, we have

| SmIV||S J\_I

z_nl +1|| \/”0’(“ andl Sm‘vll < | Vlll

whereA | is the largest eigenvalue of A,

In order to complete the proof, we only need © prove the following results are valid
— 24 —
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AMsco g, s, Vv (3 11)
Anyv V, can be expresed by v=y +¥ :4423 U, o +¢iz> V,#,. Then, using the Schwarz inequality, we get
0 r

<AVV> =a(wy) < 2(a(w, %) +aly,v)) S Zuiza(¢i.¢i) + ‘Zviza(#.#) =
oo b

BT O+ SVET e (3 12)
¢ZO | | ¢|Z | |

Obviously, the supportsof the basis functions in® , and®; areO (h?). Foreach ¢, ®,, we can calcu-

late directly |#| |, = |¥| |,< C. Foreach ¢, ® , we have
M
|¢:||S|¢:|.+Z|E.,5mﬂ:|.. (3 13)
U sing the inverse inequality, the definition of= 18y » theproperty of the operabrQ,s ., the trace theorem
and (1 3), we obtain
12 00 1S 001 5 Bl s 0 lQus,, Billes,, S BB, s W1l < C
(3 14)
From (3 13) and (3 14), we have
|# |, sC, Vo . (3 15)

Then
<AVV>S Zuiz+ ZViZ:C<v,v>, oA, £ C
P Dj

By nom equivalence, we have
MUY > el _E]Qd) z bl 2

In the folloving, we use the duality argument o prove H3 holds for the finite elanent gace For this pur-
pose, we consider the folloving auxiliary problem: for agivenv Vv, ., findy H*Q)n Hy Q) such that
AP =v- PV OinQ,

U =0 on & .
Lenma 3 3 H3 holds for the mortar-type rotated Q, elenent gace
Proof Lety, be the finite elanent goproximation olution of the problem (3 16) in the discrete paceV,.

9 we camplete the proof

(3 16)

Fram the definition of the operator P, and Green’ sfomula, we have

lv- P2 EZJ'(V Pv) (-AY) dx =
EZIJV (V- PV YW -,)dx - Ez_l:{%]vdﬁll;—g!nplvds _

R, +R, +R,. (3 17)

For the first tem at the right side of (3 17) , we estimate directly as follows
[Re | =la(v-Pvy -W) |<s|v-Pv| Y - | Sh|v- P|V||||lIJ||2 S V||-1"v- P.\:“O,
(3 18)

where (3 6) and the H® - regularity assmption are used
FollovingLemma 4 2 in [3], we get
| RIS hllv- Py I vl and [ Re [ S hllv- Py | PV s hllve Py | vl
Then we obtain the result
From Lemmas3 1 3 3 and the framework given in [6], we have the following results

Theoren 3 1 The accuracy of the cascadic multigrid method can be estimated by
L

* h
lu-u s Zgy'llfllo.
|
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( ) 30 4 (2007 )

Let the number m, of iteration stepson level | (1< IS L) be the snallest integer satisfying m.zﬁL' 'm, for
sme fixed = 1, wherem, is the number of iterationson the finest level L. W e have
Theoren 3 2 The accuracy of the cascadic multigrid method is

1 _h -1
I, B >2,
1__2 m.
lu-u |3 B’
h 4
L. — =2,
i,
and the camputational cost isproportional
1
1 mn B <4
mn < 1-'[3_
Z 1~ 4
L- mn B =4

By Theoran 3 2, we knowv
Proposition 3 1 The cascadic multigrid method with the conjugate gradient method as the basic iteration
(cascadic conjugate gradinet method) isoptimal for 2 <8 <4

In the caey =—; , either the accuracy or the computational complexity has o deteriorate logarittmically.

W e choos 1o fix accuracy and obtain the following result as an immediate consequence of our results

Theoren 3 3 Lety =—; if we choose the number of iterationson level L asm, =[m.L”], thenwe get

L
ly - u . S—[},z" f||0, and as computational ocmplexitylzzm. n<m.n (1+ Iogn)3.
m. =
Fran Theoram 3 3, we have
Proposition 3 2 The cascadic multigrid method with Richardon, Jacobi or Gauss-Seidel iterations as
snoother is nearly optimal for3 =4

4 Numerical Experiments

In this sction we present ssime numerical reaults o illustrate the theory developed in the earlier sections
These exanples deal with the Poison equation on the unit square
{ Au=1 inQ = (0,1)°

(41
u=20 on &,

where f L>@). For smplicity, we decomposeQ into two subdomains Q, = (0, 1) x (0,—;) asmortar do-

main, andQ, = (0, 1) x (—;, 1) asnommortar domain Themeshsizeson the last level L are denoted by h ; and

h , repectively Herewe use Gauss- Seidel and conjugate gradient snoothing iterations and choose the exact
olution of (4 1) asu(x y) =x(1-x)y(1-vy), thenf(x, y) =2x(1- x) +2y(1-vy).

The first test concems the cascadic conjugate gradinet method (CCG). Letf =3 andm, =4 From Tables
1,2, we can e that if themesh is refined one time, the energy error is decreasing by half independent of the
coare mesh
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Table1l Error estimatesfor CCG with h_ ;/h_ , =2/3 Table2 Error estimatesfor CCG with h_ ;/h_ , =1/2
h 1 h > level (L) lw - ul ho1 h > level (L) W - ul
3 0 005254 31 3 0 004 900 15
0 0208333 Q0 03125 0 015625 0 03125
4 0005254 31 4 0004900 15
3 0 002 626 12 3 0 002 446 76
0 0104167 0 015625 0 0078125 0 015625
4 0002 626 63 4 0. 002 449 06
3 0 00131193 3 0 0012215
0 00520833 0 0078125 0 00390625 0 0078125
4 0. 0013125 4 0 001 223 33

The second test concerns the cascadic multigrid method with Gauss-Seidel iteration (CGS). W e choose3 =

4 andm_ =L*. In Tables3,4, if themesh is refined one time, the energy error is al® decreasing by half inde-

pendent of the coarse mesh

[1]

[2]

[3]
[4]
[5]
[6]
(7]
[8]
[9]

[10]

[11]

Table3 Error estimatesfor CGS with h_ ; /h , =2/3 Table4 Error estimatesfor CGS with h y/h  , =1/2
h.1 h.. level (L) Iy - ul h.1 h.. level (L) Iy - ul
3 Q 005 24057 3 0. 004 877 65
00208333 003125 0 015625 0 03125
4 0005 240 58 4 0004 877 65
3 0 002 620 07 3 0 002 437 92
0 0104167 0 015625 0 0078125 0 015625
4 0 00262013 4 0002 438 18
3 0 001 309 83 3 0 001 218 64
0 00520833 0 0078125 0 00390625 0 0078125
4 0001 309 95 4 0001 219 08
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