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Improvement of Efficiency in FDTD M odeling of
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Abstract The shift operator fnite-d ifference tm e-dom ain( SO-FDTD) method is presented for dispersive media The
pem ittvity of dispers ve med i iswriten as ratonal polynomial function The relation between D and E is derved n
tmedanan In ths paper the SO-FDTD method is applied to smulate the elkctiom agnetic w ave propagatbn in han o-
geneous um agne tzed plasma The accuracy of the m ethod & verified by comparing the soluiton of ZI-FDTD. TheNu-
merical results also shov that the SO-FDID method & very efficient and its calculation occupies few er com puter re-
sources
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In 1966 Yee first nvented finite-difference tme-damain method for electran agneticwaves which is a nu-
merical method directly sobe M axwell s equatbns n tine-dan ain ', Tthasa btofadvantages inchiding can—
paratively easy, effective need ng less CPU tmes and m enory.

Over the hst decade¢ there have been great mprovements n using FDTD m ethods to solve prob lan s of e lee-
tranagnetisn n dispersive media In 1990 Luebbers et al published a thesis firstly mtroducng FDTD method
for dispersivemedig recursive convoliton ( RC) method”. Then in 1996 i order to mprove the accuracy of
this calculation Kelly et al pwoposed a new pecewise linear reairsive convolution ( PLRC) method . Be
sides combined with FDTD method several schemes such as the frequency-dependent Z-transform (zr)'"™,

[5]

auxiliaty differential equation( ADE) ™, the current density convolitbn (.]EC)I6I etc have been proposed to

analyss dispersve media Among of them, alternating-director-mplicit (ADI) method " and shift operator
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(S0) m ehod ! are frequently app lied during the last few years
The general constitutive relatonship n dispersivem edium is in frequency-danain and is transfomed to con-
voliton relationshp n tme-danan The dielectric constant of dispersive medum is frequency-ndependeng
thereforg it is difficult to apply FDTD directl. In this paper with ntroduction of shift operators in dispersive
tme-danan w ith the difference approxmation method arithmetic operator ntergradatbns bew een tme-damain
and dispersive tme-dam ain are obtained. And the conceptions are concise The result is acquired w ithout using
the Z-transition method W hen constitutive relationsh p in frequency-dan ain can be written as ratonal fractional
finctions it shoull be transfomed to tme-dan ain  and then to dispersve tine-daman. And recursive bmula
tons fran D t0E can be deduced The fomulations can be used for the FDTD calcu bton n dispersve med um.
W ith the shift operatormethod the rehted paraneters n the electric field are calculated when electran agnetic

wave colldes w ith hanogeneous umm agnetized plasna Campared w ith the ZT solution te accuracy of results

and efficiency of calculatbn are also obtaned

1 SO-FDTD M ethod

W ith collisbn cold plasna n dispersivem edium, thewelkFknownM axwell’ s equations and related equatbns
are given as Dllows

D -
S = xH, (1
.%z_i;x& (2)
D(0)=8¢(0)E(©). (3)

As to one-dimensbn smulaton H can be calculated fran E, and thenD fomula can be also calculated by

using the FDTD m ethod
D;”'(k):Df(k)—AAZ'[H;”'/2[k+—12} -H;'””[k-—g] : (4)

n+ 1/2] _1 _ n— 1/2) _1 _ At n _ n
H, [k+ J_H). [k+2} pUAZ[Ex(IH 1)-E.(k)]. (5)

A ssum ng the constiutive relationshp fomulation (3) n frequency-danain medum, dielectric constant

€ (®) can bew ritten as ratbnal fractbnal functbn
N
2 (7©)°
Y — (6)
20 (5)"

n=0

W ith transition relationshp fran frequency-danan to tme-danan jCO—> 0/0t, msert (6) into (3):
0
D(t):SOS{EJE(t). (7)

t
A ssum ng the function[y(t) =%l] , s central difference n (n+ 0.5) At can approximately be gven
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Defne as
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, canbine (8) with (9):

no_ _221_1 a
y_[Atz[+Jf' (10)

S 8 12
z, 1s shift operator[ 1

A fier canparison



( ) 31 1 (2008 )

o-[2a-
ot {Atz,+ﬂ' (11)

Constitutive relationsh p in dispersive tin e-danan can be given

u _ZZz—l] n_ u _22[_ ] n
["Z‘Oq{Atz[+J b= 80[";0[”[ Atz,+ﬂ E. (12)

SupposeN = 2 and inset it nto (12):

(v a2eal3]2-Lome AT oo 2o A1)

[1)0+p1 fﬁp{f] ] z,,2 +|: 2po — QpZ[XZ] 1 z+ |:p0—p1 fﬁp{ﬂ 1} &E'". (13)

Accoding to (9), (13) can bewritten n other fom:

n+ 1 n) n-1
E'”+1 :?1[ ao[l)?l + al[D_&J + az[l)?l - b]E”— sz,,73| . (14)
0

Notice that
2 2] ? 2| 2| ?
ap=¢qo+ qi At+q2 A ,al—Z(IO— 2(]2 A ;s a2=qo— q At+q2 N
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As to cod plasma relatve dieleciric constant is

o’
- r

8’(&)=1+w(]\/b—w)' (15)

W here @, is plasna frequency V. is average valie of electron collisbn frequency A fier canparson, po,

) 2
Pu P» qo G, g2 can be caleulated withN =2 po=®, pi=V, po=1 g=0 =V, ¢.=1

Accodng to (14), E can be calculated Canbmne (4) with (5), and the iterative process can be canple-
ted

2 Results and Analysis

W e perfom a smuhbtbn of pulsemeeting a unmagnetized plasna Only the popagatbn n one-d mensional
space is considered. The canpuiatbnal doman is subdivded nio 500 celly and plasn a occupies 100 cells
This smulatbn uses the propertis of silver f,= 28. TGH z(@p = 2T, ), V.= 20GHz In the course of this prob-
len, it is necessary to smulate EM waves of 60 GHz At this frequency the free space wavelength is A= 3 x
10° /60 x 10'= 0. 005m  Folbw ing the rule of the weltknown “ Courant Conditbn”, a cell size of Ax< Ay, /10
and a tine step of At= Ax/2q are used where @ is the speed ofthe light n free space The incdent pulse gen-

erated n cellnunber fve is a sne wave with a Gaussian envelop{ sn(wt) ex[{ 2'{t_—_|:t.] i” . Figs 1 and 2

show the evolution of pulse at different tme for wo different frequenc ies

Fis 1 shows the first smulation at 7GHz well below the plasn a frequency. Notice that it interacts w ith
the plasma alost as if it is ametal barrier and is alost canpletely reflected Figs 2 is a smilar smulation at
60 GHz well above the p lasn a frequency A small portion of it is reflected but hemajority of the pulse passes
through the plasm a

Furhermore fran Fig 1 and Fig 2 o numericalmethods alnost have the same accuracy, but there ex
ists a large difference n canputing efficiency. Table 1 provides CPU tin e of this smulatbn Due to no Z-trans+
ton beween the frequency-danain and tine-danan the CPU tine of the SO-FDTD can be reduced to alost
1/4~ 1/5 tat of the ZI=FDTD.
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Fig.1 Pulse propagation in free space and striking a plasma medium. The wave has a center frequency of 7 GHz
(a)time steps=300; (b) time steps=620; (c)time steps=800
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Fig.2 Pulse propagation in free space and colliding a plasma medium. The wave has a center frequency of 60 GHz

(a)time steps=300; (b) time steps=800; (c)time steps=1000

Tablk 1 The CPU tine for two numericalm etods at different frequencies and tin e steps

Num erical CPU tines/( x 1072 seconds)
m ethods f= 7x 10°Hz f=60x10°H z
300 620 800 300 800 1 000
T 10. 156 1875 25.00  9.375 26.563 32 813
SO 2.0313 46875 6.25 3125 6.25 78125

3  Conclusion

In this paper the dielectric property of dispersive med & iswritten as rational polynam ial function and the
relations beweenD andE are derived in tmne-danain It is naned shift operator FDTD ( SO-FDTD) method
Andw ith dographic exanples of smulation of electran agnetic wave popagaton n free space and colliding plas-
mamediun the accuracy of ZI-FDTD is verified w ith the SO-FDTD m ethod The SO-FDTD method is very effs
cient and its calculation occup es fewer camputer resources such as CPU tm e and m emory

The SO-FDTD method has been explaned fora 1- D TEM wave n this paper H ovever ourmethod could

be applied in a wo-dimensbnal or three-d mensbnal wave
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