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M ortar elenentmethod is a nonconfom ing danain decan positbn method w ith nonoverlapp ng subdam ains
The general concept formortar techniques was orgmnally introduced in[ 1] for coupling spectral elem entm ethods
and finite elan entmethods Themeshes on different subdam ains need not align across subdanamn nterfaces and
them aich ng condition on the nterfaces is only enforced weakly by mniegral conditions H owever most of the
works use conform ng fnite elanent spaces n each subdaman M arcinkow ski first constucted and analyzed the
mortarmethod for second order ellptic problems w ith locally nonconform ng P elem ent”. Chen and Kin et al

. . LY
considered mortar type quadrilateral elements respectlvely[ I,

6 ) )
*°1 This elament is a

Nonconform g quadrilateral elament is a new elen ent intoduced by Douglas et al
modification of the rotated bilinear elaments ", preserving a cerlain canceling property Based on these ele-
ments Caietal” proposed stabilized Stokes elements Such quadrilateral elments were used to define a non-
conform ing m xed element for fullM axwell equationslgl, which is the firstnonconform ng elanent forM awell e-
quatbns These elements have also been used to planar linear elasticity prob len 4"

In this paper we studymultigrid algorithms for the mortar-type nonconform ng quadrilateral e lem ent for see-
ond order ellptic problens An ntergrd transfer operator & presented for the nonested mortar element spaces

W ith the franework devebped in[ 11], we prove that theW—cyclemethod isoptinal i e, the convergence rate
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is ndependent of the leve] and the variable V-cycle algoritm proviles a preconditbnerw ith a conditbn num ber
which is bounded ndependently of the levels Numerical experments demonstrate that the optin al convergence
property for the W—cycle algorithm holds w ih any nunber of snooh ng steps

For conveniences we denote by C a unwersal constantwhich is ndependentof the mesh size and level but

w hose values can differ fran place to place throughout this paper
1 M ortar Nonconfom ing Quadrilateral E lem ent

In this chapter we dealw ith the folbwing model problem:
-Lu=f nQ (D
w ih zew Dirichlet boundary condition where Q€ R’ is a bounded rectangle or L-shaped danan f€ L’(Q).
The varatonal fom of (1) is to find uEH(l)(Q) such that
a(w v)= (fv) Vo€H(Q), (2)

where the bilnear fom a(u, v) = Q.& u* yody Vu UEHI(Q).

N
W e assme that Q is decanposed into nonoverlapp ng open rectangu lar subdanains Q, 1<ESN, Q= kL_.Jl

Qwith QNQ ==, i# LetTh be the coarsest quasi- uniform trangulation of the danan Q; m ade of ele-

ments that are rectangles whose edges are parallel to x—axis ory—axis Them esh paraneterh;, is the diameter of
N

the largest element nT, and leth, = 1@;;%}“’ w Denote the globalmeshkleAl by T\ W e refine the triangulatbn

T\ to produce T, by spliting each rectangle ofT; mito four rectangles by pnng the opposite m idponts of the ed-

ges of the rectangle The triangulaton 7', is quastunifom of sizeh,= h, /2 Repeatng this process we get the &

tme refined triangulation T, w th mesh sizeh, = hi2'"” l, I=1 ... L Let 8;1 be the setof the edges ofT,;. D enote

N
the gbbal edges kyl g by €. M oreover M, is the m dpoint of € €. For each triangu lation T/ (2 ), we ntro-

duce the nonconfom ng finite elamentemployed n [ 5]. LetK= [- 1 1]2 be the reference square n R’ and(Q

= Span{1l x ¥ (xz— —§x4) - (yz——gy4)} be the reference fnite elament space on K. Defne a finite d men-

sbnal space by
VI(Q)= (€ L'(Q) lole=0 %', 9€Q, VKET/, v is contious atM,, V e€ &( ),
andvk (M.)=0Q Ve€ &(00N0Q) ),

where Fx: K~ K is an affnemapping brallK€ T.". Note that forv € Vlk(Qk), Ede =lel* oM,), V e€

N
&(% ) LetVi= T1V,"= v, 1o = v 1o, € Vi (@) ) Obviusk, we have V;D V;D ...D V;.

W e restrict ourselves to the geametrically con bm ng situaton where the ntersection between the boundary
of any wo different subdam ans Q1 Q, iZ j is either enply set avertex or a canmon edge LetI'; denote

the open edge that is canmon to wo subdamans Q; and . FurtherI'; willbe also called interface and denoted
by Y, (1S<m <M ). W e also need to ntroduce a global nterface I' as the union of all nterfaces bew een the sub-

M

N o— o
dmans ie, I'= kylaQi \0Q=U,;I'; = UIY,,,. Note that each edge I'; inherits wo triangulatbnsm ade of seg-

ments that are edges of elements of the triangu lation of Q; and &, respectively In thisway each'; is provded
wih wo ndependent and different ID meshesw hich are denoted by 7, (T'; ) andT/ (T ;). Because our sohitbn
space is not contaned nH, (Q), we have to ntroduce sam e matching conditbns over all nterfaces I'; C I’
which are sufficient to ensure the optinality of the global approxination One of the sides of I'; is defined as a
mortar( master) ong denoted by ¥, ;, and the other as a nonmortar( slave) one denoted by §,,. Let themo#
tar side of I'; be chosen by the condition A, ;< hy;. An auxiliary test spaceM (8, ) is defned by
Mi(& )= {vEL (&) )| vl.= constant ¥V e€T (&) ): =T (&)}
— 17—
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The dmension of M ;( §,(;) ) is equal to the nunber of elements on §,;). For each nonmortar edge §,.;) = I' ;C
I, we ntoduce hel’ - orthogonal pwjection operator @y, - Lz(Fij)_}Ml(é,,(j) ) by (Qus, v w)ixg, )=
(vw )iz, ), for allw € M (8 ) where(*, * )i, denotes theL> inner product overL’ (Gii) )
W e now defne the follow ng mortar finite elment space for nonconfom ng quadrilateral elements
Vi= (€ VIV %= 8y CLL Qi (vl ) =01,y (v, ) ).
The cond ition of the equality of the L’ - orthogonal projection of the traces onto the test space for each interface is

called the mortar cond ition and can be equvalently rewritten as
5,,'[-, (v, —vlg, Jwds=0 Vw EMi(6 ) (3)
It isworth to note thatV, DH o (Q).

Since finctbns n our discrete space V; are not continuous wemustuse amodified variational fom a;(* ,

* ) in the discretized problen. Define
ai(uls v ) = Z .

L,k k Ek k
_[rug‘ywdag Vul,mE Vi,
EE TH ©

N
Cl[(lt/, ’I]/) = Zalk(u/, ’I][), Vu,,v,E V[. (4)
k=1

Obviousk, the fom a;(*, * ) is positve-defnite on V. For anyu,€ V), we introduce a broken energy nom:

N
172 2
||’I)[||l:( E H”’H“‘a N where ”'Ul”lk = alk(vl, ’I)l).
k=1

Themortar-type noncon Hm ng quadrilateral element appoxination of (2) is to find u,€ V; such that
az(u1, 1/1)2 (f,vl), Vvle V]. (5)
The follow ng eror estinate can be found n [ 4].

Theoran 1 Letw, u; be the soltions of (2), (5) respectvely then

N

||u—u,||12<C;h1k2IuI§k. (6)

2 M ultigrid A lgorithm

W e now apply the heory developed n [ 11] to constuct ourmultigrd akorithm. Before giving the ako-
ribm, wemustdefine a suitable ntergrd transfer operator for the nonnested spaces V. Fistwe define an opera-
orJi: Vi~ W as folbws

Q eC 00, N Q

(]1;1)) M.) = v(M.), eC 0Q,\0Q oreDE, E € Tlflka (7)
_;(U le,M.) +vle,(M.)), eC B, N &, E, E, € Tl—lka

where e is an edge of E and E€ T,

: . - Eooa
Before we startw ith the investigation of the operator J;, itw ill be use- e

fil to collect sane fomulas ForE€ T;k, v€ Vl,lk, define b;;z vlg (M”i) E, : E,

(seeFg 1 for the notatbn), and set 1 LI "
so=be+ bp+ bp+be, Ag=by— by, :
Bl - BB, D= K- b BB

Then with the subscrptE anitted we have the next lenma e’

Lenma 1 Ithols that Fig.1 Edges and subsquares of E in T,
2 1,2 2.2
||’U||L2(I~J)2 = hI—I,kz[i_6+ (AIZ) + (A12) + 225320(90)%, (8)
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15 ollie™ = (8')2 4 (a7)7 + 320" (9)
, 3
||y'U||L2(E-)2<_4( ) +_4(A2)2+?6(60)2, (10)
23h11,k 2 hl—l,/lc2 « i 2
< s <—=
0 ;:(b) < ol <= ;(b). (11)

Proof Fran he smilar aigument n [ 12], we can see it is suffcient to prove (8) — (11) for the master

squareE = (- 1 1)2. A straghtfoward caleulation gwves

A2 ! 30 2 5 4 2 5 4
v=wlny) = st Towk oy g0/ (0 - ) - (y -y )] (12)
N ow direct ntegration yields the desired results m ( 8), (9). Alsq (11) bllows fran ( 8) by canputing the e+
genvalues of the symmetric 4 X 4m atrix T DT, whereD= diag(1/16 1/12 1/12 23/2520), T stands for
the transfomatonmatrk fran the vector (bl, bz, b3, b4) to(s A l, A 2, o ), and T ' is he ranspose of T.
These eigenvalues are 23/63Q0 1/ 1/6 and 1/4 which mples (11).

(10) can be get by a straight foward calcu hton and triangle inequality
Lenma 2 For any o€ Vi ,, it hols that

Sl o SClloll g, (13)

N Jiw=vllgy < Chyp ol Ly, (14)
gl < Clloll Ly (15)

I Jiv=ollo, <Ch ' Mol Ly (16)

Proof Fran (11) in Lenma L we can get ( 13) thel’ stability of],k as

17kl < Zhjl Z(b h’ > 8275Z(b <14l

& A 4o 1024 (17)
To obtan (14), we need to deal with the difference J"v— v which P, M Py M, P,
isan elm entof Vi_ 1+ V/'. Fran the defin ition (7), wecangetwo VO E,

cases of value on them iddle point of edges for]lkv— v. If an edgee M- - - -9'3 ______ Mo ‘02 _____ M,
€ belongs to the mterbr of sane square inT/ 1 or be contaned l I

n 02, \0Q then J,' v— v vanishes onM.. W hat ran ans are edges e , : A
that bebng to either a (boundary or interior) edge of the partition ’ M, P M, ]

T-1 or0Q W e can get (]Ikv— v)(M.) exactly Takinge=P M,C Fig2 A illustration for Lemma 2
OF, for exanple ( see Fig 2),

25
256

(Jlo=0) e (M) == =5 (s(M) = o(Ms) ) -

o e (V2] = v(M2) )+ 5o

556 (v0) = v(Ms) ) =

7 7 39
= 55g(vMs) =v(M1)) = Sec(vMy) = v(Ms)) = Ssc(vM2) = v(M 1))

— e (VM) = o3 ) + 52 (o) = oM 1) )+ e oM 1) = v(Ms) ).

Note that for the edge eC 0,1 0Q of E,, (]z v-v) lg,(M.) issinilar to express as above Usng the nom e
quivalence we can ob tain [(]/kv—v) e, (M. )]2<C(|vl311(51)+ |11|1§1(EZ)) whereE, E,€T/. . Sowe have
N1 o= ol s, < Chy) Z Z[(J, v=v)M.)]> < Ch ol L7 which gives ( 14).

E€ TkeC

(15) follows fran the sane argument as n the proof of ( 14). W e refer to [ 13] for the proof of ( 16).
Based on the operatorjlk, we defne an ntegrd transfer operator J; V- "V, as folbws for any v= (vl,

v ey y“)E Vi Jiv= (]111’1, Jov, It )JE V. Defne the operator &, . vy, by
. Iy —wls M. ), € T8 )
(Elﬁmm (v))(M.) ={(lem'“ (v m (i) v %(1»))( ) ¢ 1( Sy ) (18)
0 othemw ise
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M

Then for any € V,, letv = v+ ZE;%]‘U and it is easy fo seev € V.
1

m=

. . . . -
A fler he above preparation we defne an ntergrid transfer operator I Vo Vi
M

Iv = Jw+ ZIEMW (Jw) €V, v€ V., (19)
W e now niroduce sane useful operators A, denotes he operator on V;, whrh is defined by
A v) = a(wv), Yuv€EV (20)
In tem s of the operatorA, the discrete problen (5) can bew ritten as
Awi = fi (21)

where £,€ V, satisfies (f, v, )=f(v), ¥V v€ V.
Based on I, we define the projectbn operatorP,_ i V," Vi, and P Vi Vi by
ari(Priwv) = a(ulp), u€ V, Yo € Viy, 1= 2 .1 (22)
(Pliwv) = (whv), u€ Vy, Vo€ V., [= 2 ... L (23)
In order to define multgrid akorithm, we construct snooth ng operators ncluding Gauss-Seilel and con ugate
grad ent iteratbnsg which satisfy the follow ing conditbn ( see the pwof of (A. 4) n the chapter5 of [ 14]):
(R) There exists a constantCg >1 independent of [ such that

2
Il

SCe(Ru u), Yu€ v, (24)

forbothRi= (I-K, K,)A,” " andR,= (I-KK, JA, ', whereK,= I- RA, K, =I-R/A, R} be the ad pint of
R, with respectto (*, * ), and A, is the maxmum egenvalue ofA,.

A generalmultigrd operator B V.~ Vi can be defined recursively[”].

Accodng to[ 11], an key condition n themultigrid analysis is the regularity and approx m ation assump-

ton
(H1) Let A be them axinum egenvalie of A, There exists an a€ [Q 1] such that
2] a
| ai(v— LPriy v) |<{M+M ai(y v)]_a, Vo€V, (25)
The convergence rate for the above mu ltigrid algorithm ism easured by a convergence factor § satisfy ing
la/((I- BA)u v) IS 8 ai(uv). (26)

Follow ng [ 11], we state wo propositions
Proposition 1 (W - cycle) Under the condition (H 1), ifp=2 andm (l)=m is hrge enough then the
convergence factor in ( 26) is

__C
C+m"’

(27)

Proposition 2 (varsble V- cycle preconditbner) Assume that (H 1) is vald and the number of snoot
hingm (1) ncreases as [ decreases n such away thatBym (1) Sm (1= 1) <Bm (1), hoHs with 1< By < B,.
Then there exists anM > 0 ndependentof/ sud that

Cola(vv) S a(BAm v) < Coai(uv), YvE V, (28)

Wihcozfm%;
m (1)

3 Verification of A ssunption (H 1)

Fran sectbn 2 we know hat ifwe can prove that he assumpton (H1) holds br hemortar elementm eth-
od for noncon fom ing quadrilateral element then convergence results of ourmu ltigrid methods are obtaned To
this end in he follow ing subsection, we first gve some technical lanm as

Lenma 3 For anyv€ V., it holds that
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(YWl < cliolley, (2) o= Lolly KCh oIl L. (29)
Proof For the proof we refer to Lenma 6 n [ 15].
Let®/: Hz(Qk)_) 14 (24 ) be an nterpolation operator defned as folbws

(0 v)M.) = vM.), YV vEH* (), ¢€ g&". (30)

Leanma 4 For the nterpolation ®," and the transfer operator,]zk, we have for any v€ Hz(Qk),
- @f‘vll or + b o= 0l 0 S Chy wllyy, (31)
o= ' (0L v) Wow + hi lo=J" (0 ) 11, KCh ol (32)

Proof The proofof (31) can be found n [5], here we only pove ( 32). Using (31) we get
No— 7 0 ) llgr K o= 0 vl g+ 10 =g (0., v) Il4, <
Chi’Woll o+ 10 = 1 0, ) Il g (33)
Observing the proof of (15) n Lemma 2 using hanogeneity argument n [ 16], we have

” ®1k1]— ]lk (®l,1k1)) || Okz = EZ: || ®lkU— J]k (®171k’l)) ||L2(E)2 <
EE Tk

Ch[A-z Z || ®/k1)— J[k (®1_1k11) ||i2(E) <

EE T,k

Ch 2, Z[(@l v= 1 (O ) )My )]

EE Tk i=
2 25 . 2
Chii® 33 1= (00 ) = 0M) ) = 5 (002) = 3(M) ) + 5o (D) = 1005)) )
Chy Z(sup|v|) Chi” D 1o e < Chyt Lo 1y (34)
EE T}k
Canbining (33) with (34) yleHs the first part of ( 32) The second part of (32) follows fran the obsewaton
o= gl (e v) Il <c ) Z[(v— Jhceute))m, ) <
EC T ) i=
Chlk_z || v - ]zk(®1_1 1}) || ka < Ch/,/zf2 || 1)” 2;‘.2,
the proof & canp leted
Based on the operator ®/, we now defne ®1:H2(Q) NH, (Q)_) V, as folbws For any v€ H’ (Q)N
H(I)(Q), Ow= (@111)1, . ®/NUN)E V, whereo' = vlo,

M

&= 0,8+ Y 8, (019 (35)

me= 1
Lemma 5 For the operator I1, we have
le— 1mell g+ bl e= 102l < ChN e, V€ H?(Q)NHy(Q). (36)
Proof The proof is smilar as the one of Lemma 9 in [ 13], we am it here
For the operator IT; and the intergrid transfer operator [, the folbwing lenma is cucial
Lenma 6 For any & HQ(Q)ﬂH(l)(Q), we have
le— 111, ¢ll, < C hll el (37)
Proof By the defnition of IT,_; and I, we obtain

C- LT, 2= = [(0,,2) - le(@_ by (©18)) =

&= Ji(®L19 - ZQ@,,W(OI—IQ - Z],(é,_l%)(o,_lé)) (38)

m= m=1

Usig triangle inequality we get

le— gt el > <cill = J(0, 8117+ ZII Gy, (O Q)11 +

m=

Z I1(Gs, (€018)) 117 (39)
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Usig the s ilar aiguments of he proofof Lenma 10 n [ 13] we canplete the proof
Lenma 7 For the operatorP,_;, we have
||1)—P1,11)||0<Chl||1)||1, Vv € Vi (40)
Proof The proof can be done by usng dual agun ent Lemma § § we refer to [ 15] for details
Theorem 2 (H1) isvaldwiha=1/2 1ie,

2) 172
La( (1= 1Py )u ) 1< {”A—” w(vv)’, Vo€, (41)
Proof UsnglLenma 3 and 7 awguing asTheorem 4 1 n [15], we can prove (41) easil.
4 Numerical Experments

In this sectbn, we present sane numerical results to illustrate the theory developed n the earlier sectbns

These exanples dealw ith the Poisson equation on he unit square w ith zero dirichlete boundary cond ition.

For smplicity, we decanpose Q into wo subdanans Q;=(Q 1) x (Q —;) asmortar danain and Q, =
(Q1)x (—é, 1) as noomorar daman The sizes of he coarsest grid are denoted by 1 and hy» respectively.
Here we use Gauss-Seilel snoothing iteration In our first experments we consiler the W — cycleM ultigrid A +
gorittm s Table 1 shows the number of iterations required 1o achieve the erwor reduction 10° *, where he nitial
valie B zero [ denotes the level number d a f denotes the degrees of the freedan on eadh level Andm (1) is
the pre-anooth ng steps and the post-smoothng steps The iteratbn numbers are denoted by ite, i my). The
second test concerns he variable V- cycleM ultigrid A korithm. The results are shown in Table 2 W e use the
preconditioned conjigate grad entmethod for the d seretized systan sA u,=f, [=2 3 ... L, with the variable V
— cycle preconditionersB,. We denote itey , iter , the iterative numbers of PCG method where the relative er

2 3

ror of resilue is less than 107w ih hyv/Mmy2=1/2 and by 1 /hy2= 2/3 respectively W e also choose zero as nitial

valie
. . 1 1 1 1 .
Tabk 1 Iterative num bers for theW - cyck wih ki, 1= h12=—2 ( kft) andh“:?, hL2=—4(rlgllt)
h, h=21 h, h=21
l 2 3 4 5 6 2 3 4 5 6
daf 94 348 1336 5232 20704 230 876 3416 13488 53600
iter ) 7 8 8 8 8 8 10 10 10 10
iler(z 2 6 6 7 7 7 7 8 8 8 8
iter; 5 3 5 5 5 5 5 6 6 6 6 6

Fran Table I, we can see that the iteration nun— Table2 Iterative numbers for the PCG-method witim () = 27!

bers for the W — cycle multigrid akoritm ren ain con- ! 2 3 4 5 6
ter

stant with any number of snoothing steps when the 3 2 2 3 3 3
. . . .o ite

mesh size decreases which is better than Propositbn iz 2 2 2 2 3

1 And experimental results form Table 2 show that the iterative nunbers are ndependentof themeshes sowe

state that the conditon number ofB,A; is bounded un ifom ly
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