四阶幻方的变换群

徐丹丹, 张学斌

(南京师范大学数学与计算机科学学院, 江苏 南京 210097)

[摘要] 四阶幻方共有 7040个不同的形式,在 8阶变换群的作用下便可得到 880个基础形式.证明了存在 1个 32阶变换群,并将 880个基础形式进一步分成 220类.

[关键词] 四阶幻方,变换,变换群,翻转,旋转

[中图分类号] 0175.29 [文献标识码] A [文章编号]1001-4616(2008)04-0026-03

Transform ation Group of Magic Squares of Order Four

Xu Dandan, Zhang Xueb in

(School of Mathematics and Computer Science, Nanjing Normal University, Nanjing 210097, China)

Abstract It is well-known that there are 7 040 different magic squares of order 4, which have 880 basic forms under the transformation group of order 8. It is proved that there is a transformation group of order 32, and under which 880 basic forms can be divided into 220 classes

K ey words magic squares of order four transformation, transformation group retroflex ion, rotate

幻方在我国称为纵横图与龟背图,西方称之为魔方或幻方 (Magic Square), 是由数 1, 2, …, n^2 排列 而成的 $n \times n$ 方阵,方阵中每 1行、每 1列以及两对角线上 的 n 个数之和均相等,其值 n (称为幻和 Magic Sum) 为 $n(n^2+1)/2$

幻方最早记载于我国公元前 500年的春秋时期《大戴礼》中,这说明我国人民早在 2 500年前就已经知道幻方的排列规律. 而国外直到公元 130年,才由希腊人 A lex and ria Theon第 1次提到幻方. 欧洲最早幻方是 1514年德国画家 A bercht Dure在他著名铜版画 M elencolia上所画的 4×4 幻方 11 ,有趣的是,他连创作年代 (1514) 也镶嵌在这个方阵中,而且上下左右 4个小方阵和皆为 34 是欧洲最古老的幻方.

幻方有许多用途,特别是计算机的发展赋予了它新的意义.目前,它在程序设计、图论、人工智能、组合分析、实验设计 (如正交设计)以至工艺美术方面都有广泛应用¹²⁶⁷.本文主要是探寻四阶幻方的变换群,并对四阶幻方的 880个基础形式进行分类.

1 三阶幻方的分类

众所周知, 三阶幻方共有下面 8种不同形式[7]:

4	9	2		
3	5	7		
8	1	6		
A_1				

4 3 A₂

5

6	1	8
7	5	3
2	4	9

 A_3

8	3	4
1	5	9
6	7	2

 A_4

收稿日期: 2008-03-16

基金项目: 国家自然科学基金 (70571087)资助项目.

通讯联系人: 张学斌, 博士, 教授, 研究方向: 组合与设计理论. E-mail zhangxueb in@ njnu edu. cn

4	3	8
9	5	1
2	7	6

6	7	2
1	5	9
8	3	4

8	1	6
3	5	7
4	9	2

 A_7

9	4
5	3
1	8

 A_8

 A_5

其中 A_2, A_3, \dots, A_8 可以由 A_1 经旋转 90° 或沿主对角线翻转数次得到.

 A_6

定理 1 三阶幻方共有 8种不同形式, 在 8阶变换群下, 有 1种基本形式.

2 四阶幻方的 8阶变换群

假设 $A = (a_{i,j})_{4\times 4}$ 是一个四阶幻方, $S = \{(i,j): 1 \le i \le 4, 1 \le j \le 4\}$ 是四阶幻方中元素 $a_{i,j}$ 位置的集合.

定义 **1** 设 φ 是 S上的一个一一变换, $A = (a_{ij})_{4\times 4}$ 是任意一个四阶幻方, 并设 $b_{ij} = a_{\varphi-1(ij)}$ 及 $B = (b_{ij})_{4\times 4}$. 若 B 总是一个四阶幻方, 则称 φ 是一个四阶幻方变换, 并记 $\varphi(A) = B$.

引理 1 $a_{1,1} + a_{1,4} + a_{4,1} + a_{4,4} = 34$, $a_{2,2} + a_{2,3} + a_{3,2} + a_{3,3} = 34$

证明 根据四阶幻方定义可证得.

(2) 以 σ 表示以主对角线为对称轴所作翻转变换, 即 $\sigma(i, j) = (i, i)$.

引理 2 σ和 T是 2个四阶幻方的变换.

证明 设 $A = (a_{ij})_{4\times4}$ 是任一个四阶幻方, 则有:

	$a_{ m l,4}$	a _{2, 4}	a _{3, 4}	a _{4, 4}
$\tau(A) = $	$a_{ m l,3}$	a _{2, 3}	a _{3, 3}	<i>a</i> _{4, 3}
(11)	$a_{ m l,2}$	a _{2, 2}	a _{3, 2}	a _{4, 2}
	$a_{1,1}$	a _{2, 1}	$a_{3, 1}$	$a_{4, 1}$

显然 σ和 T是 2个四阶幻方的变换.

不难看出:

引理 3 假设H 是由 σ 、 τ 生成的群. 那么 σ 、 τ 有下面关系式:

$$\sigma^2 = \tau^4 = \tau \sigma \tau \sigma = e$$

从而进一步有 H 为 8阶群.

下面结果来自于文献 / 8/:

引理 4 不同形式的四阶幻方共有 7040个.

引理 5 在变换群 H 的作用下, 四阶幻方有 880个基本形式.

3 四阶幻方的 32阶变换群

再引进 S上的两个一一变换 ϕ 和 Φ

假设 $\phi(i, j) = ((14)(i), (14)(j)), \varphi(i, j) = ((13)(24)(i), (13)(24)(j)).$

引理 6 ϕ 和 φ 是四阶幻方的 2个变换.

证明 设 $A = (a_{ij})_{4\times4}$ 是任一个四阶幻方, 则有:

	a _{4, 4}	a _{4, 2}	a _{4, 3}	$a_{4, 1}$
$\phi(A) = $	a _{2, 4}	a _{2, 2}	<i>a</i> _{2, 3}	a _{2, 1}
φ(11)-	$a_{3, 4}$	a _{3, 2}	<i>a</i> _{3, 3}	$a_{3, 1}$
	$a_{1,4}$	a _{1, 2}	$a_{1, 3}$	$a_{ m l, l}$

	<i>a</i> _{3, 3}	a _{3, 4}	<i>a</i> _{3, 1}	<i>a</i> _{3, 2}
$\varphi(A) = $	a _{4, 3}	a _{4, 4}	<i>a</i> _{4, 1}	a _{4, 2}
P (1)-	$a_{1, 3}$	$a_{ m l,4}$	$a_{1, 1}$	a _{1, 2}
	a _{2,3}	a _{2, 4}	a _{2, 1}	a _{2, 2}

可见 $\phi(A)$ 和 $\varphi(A)$ 皆为四阶幻方, 因此引理 6得证.

下面证明变换 σ, τ φ 和 φ 生成了 32 阶群.

定理 2 假设 N 是由 σ 、 τ ϕ 和 ϕ 生成的群, 那么有下面关系式:

$$\sigma^{2} = \tau^{4} = \phi^{2} = \phi^{2} = e,$$

$$\sigma \tau = \tau^{1} \sigma, \quad \sigma \phi = \phi \sigma, \quad \sigma \phi = \phi \sigma,$$

$$\tau \phi = \phi \tau, \quad \tau \phi = \phi \tau, \quad \phi = \tau^{2} \phi \phi.$$

从而进一步有 N 为 32 阶群.

证明 由引理 3知: $H = \langle \sigma, \tau \rangle = \{ e, \sigma, \tau, \tau^2, \tau^3, \sigma\tau, \sigma\tau^2, \sigma\tau^3 \}$.

根据上面关系式直接证得 $\phi \Psi I = \Psi H$, 且 $H \setminus H \setminus \Psi I \setminus \Psi I$ 两两不相交. 这就是说, $N = H \cup \Psi I \cup$

因此我们有:

定理 3 在变换群 N 作用下, 四阶幻方分成 220个不同形式的类.

[参考文献]

- [1] Ganter B, Quackenbush R. D roids [J]. Annals of Discrete Mathematics, 1982, 15(2): 179-187
- [2] Bonce let C. W avelet transform based waterwork for digital images [J]. Optics Express 1998, 12(1): 497-515.
- [3] 邹建成, 李国富, 齐东旭. 广义 Gray 码及其在数字图像置乱中的作用 [J]. 高校应用数学学报, 2002, 17(3): 365-370
- [4] 丁玮, 齐东旭. 数字图像变换及信息伪装技术 [J]. 计算机学报, 1998, 21(9): 838-843
- [5] 许芝卉. 用程序实现自然方阵构造奇数阶全对角线幻方 [J]. 雁北师范学院学报, 2003, 19(2): 16-18
- [6] 徐承绪, 卢准炜. 全对角线幻方的存在性 [J]. 南京师大学报: 自然科学版, 2004, 27(4): 32-35
- [7] 丁宗智. 幻方[M]. 南京: 东南大学出版社, 1992, 55-68.
- [8] 张景中. 幻方及其他 [M]. 北京: 科学教育出版社, 2004: 73-75.

[责任编辑:丁 蓉]