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Abstract A mortar elan ent vers bn for wtated ), elment &5 poposed The mortar conditon is only dependent on the
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The mortar elan entm ethod is a nonconform ng dam ain decam position m ethod w ih non— overlapp ng subdo-
mans The meshes on different subdan ans need not algn across subdanans nterfaces and the maich ng of
discretizations on ad pcent subdanamns is only enforced weakly Recently, the method has been studied exten-

sively and many results have been obtaned " ”.

M arcinkow ski considered themortar elenentmethod w ith beally
Py noncon bm ng elements and obtaned he optin al erwor estmate n [ 3], but hemortar cond ition is dependent
on the degrees of the freedan on the nterfaces and those near the interfaces In [ 4], Biand Lialso consdered
hemortar elenentmethod w ith locally P nonconfom ing elen ent and hemortar cond ition is only dependent on
the degrees of the freedan on the interfaces

In [ 2], Chen and Xu pwposed hemortar elament for rotated )1 element smilar to [ 3], themortar con-
ditbn is relatve to the degrees of the freedan on the interfaces and those near the nterfaces In this paper
based on [4], we also consider themortar element for rotated Q) elament and the mortar cond ition is only cor
relate w ith the degrees of the freedan on the nterfaces By virtue of a localmap on the nterfaces we constuct
mortar conditon across the nterfaces and the optmal error estinate for rotated (1 mortar elament m ethod is
proved

The remander of this paper is organized as folbws In section 1 we ntroducemodel problem, the rotated Q;
mortar elament method and sme notatbns Same technical lenmas are given in sectbn 2. Section 3 proves the
optinal error estm ate Last section gives nun erical experments show ng the optmality of our theoretical results
For conveniencg the symbol<, %>, and = willbe used in thispaper andx;<y, %% y2, and x3= y; mean

Ihatx1<C1y1, X >C2y2, and C3x3<y3 KCyxs for same conslants C, C, Cs and Cy4 that are ndependent of
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mesh size
1 Model Problem

Let QC R’ be a rectangular or L— shape bounded damain w ith boundary 0Q. Consiler the follow ng model

problen
- Au=f inQ
{ ; (1)
u= 0 onoQ
the variational fomu lation of (1) is to find uEHé(Q) such that
a(wv) = (fv) Vo€ Hy(Q) (2)
where

a(uw v) = Q.['fu' ¥ oode (fv) = gjudoc. (3)
Partition Q nto geanetrically confom ing rectangular substructures i e,
it
Q=1}:J19k and @, N Q= f k# |

Q.M Q, is anply set or a vertex or an edge for k21 W ith each Q, we associate a quasi-unifom triangulation .7~
() made of elements that are rectangles whose edges are paralle]l to x— axis or y— axis The mesh parameter
hy is the diam eter of the largest elan ent n .7 ( Q. ). Letl'y; denote the open edge that is canmon to €, and Q,
he interface I'= U0Q, \0Q is boken nto a set of straight segnents "y LetQ,, and 0Q, , be the sets of vert+
ces of the triangulaton .7 ( Q) that are in Q. and 02, respectively

W e constuct the wtated ()1 element for each trangulation .F( €, ) as follbws

X,](Qk): ,/Z)E Lz(Qk) lvlg = a2~+a;x+(l;}’+ (Iﬂi(xz_yz)ﬁ
a € 7 wﬁag” laads = Q VE € F(Q);

forE, E; € Z(Q), ifcE, N &, = ¢ then Jlaglds: Jlagzds},

w ih nom and sen nhom

1 1
2 > 2 3
||U||th(gk) = ( E { ||1}||H|(E))z, |U|H,l,(9k) = ( § / |’U|HI(E))2.

EC . 7(Q) E€ ()

The gbbal discrete space is defined by

X,(0) = HX(Q )

N N
wih nom [lvllyi0, = (1; Il ’I}H;/IL(Q“)_; and sem inom | v ly)e) = (; | v |]-21117(Qk))%.

Sncel'y mherits wo different triangu lations we denote one of the sides of I'y; asmortar by ¥, ) and the
other as normortar by 8., hen Y= 6,0 = Dy by £ (Yo ) and.F' (&) denote he different trian-
gulatons across ', (Assun e the fine sie is chosen asmortay i e, h, h. ) DefineS, (§,,) tobea sub-
space of L (T';;), such that its functions are piecew ise constants on Ve (S1y). Thedmenson ofS, (G,y ) is
equal to he number of elments on he §,;. Foreach nonmortar edge §,(;, define an L’ - projecton operator
Qs L™ (Tu)” Si(8w) by

(Qsu s, = (v Yy V€S (&) (4)
Smilark we can define Sy ( ¥%,4) ) and Q..
In the sequel kt.%» () be the partition which is constmcted by connectingm idpon ts of the opposite ed-

ges of elaments of .7 (2, ). Introduce an auxiliary confom ng bilinear finite elam ent space

= V0 )= € C 1wl isbilinear VK € Fn( %))
Let V' = H and V7 (s) = WP I, forsc (U 00).
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W e introduce a localmap I~ [/2(Y) defined as Dllows

(1) P is amidpont ofe€ X thenl'v(P) = L st;

| el e

(2) IfP is an end point of ¥, I'v(P)=1v(Pck ), wherePcg is the nearestm idpont of P on Y.

(3) P is averexofan element.Z(Y), I v(P) :_;(]YU(PI) + I'v(P,)), whereP, P, are the leftand

right neighboring m idpoints ofP on ¥
Now, we can defne the global discrete space formortar elenent
Vi= (vEXi(Q)1Qa(lQvn) = Qo ¥ 8y = Yuu) C T,
andv,;= v |5m”). The condition on I is caled mortar conditbn Our discrete pwoblean of (2) is

where v, = vly
n (k)

find w, € V, such that
ah(uhy 71/1) = (Jf Uh), v Uh E Vh, (5)

w here

Z (Y Up, Y Uh )E
EC 7(Q,)

N
ah(uh; Uh) = Az;ah k (uh, Uh ), ap k (LLh, Uh) =

Obviousk, the fom a, (*, * ) is positve defnitg and the pwblem (5) has a unique soliton

2 Sane Technical Lemm as

To reach our conclision, we present sane auxiliary technical lenm as
Defne an operator. 7,: X, (QA.)_) Vm(Qk) asDefniton 3.1 n [ 4].
For the operator.#;, we have the follow ing result
Leanma 1 For any v€X, (Q;), we have
| 20 o= 1 0 o, - (6)
Proof For anyK€ 7, (9 ), there exists an elmentE€ .Z(Q,) such thatk CE. Assume thatP, is the
canmon vertex ofK and E, P, and P3 are other wo vertces of K which lie on he edges of E, and P4 is the

fourth vertex ofK which lies nE. Then

4
| Mo ) = 2, | Mo (Pi) = w(P;) TP <
2y

1=
1 }f 1 ; 2
,dé_lq-lg-ds)<

€ F () P 1€ T ] aT(| e |

2
| v |Hl(‘|.').
TEJ/;(QIE;,PIET
Sunm ng over allk € 7, (% ) yields
| 260 o,y <1 o lgie,). (7)

For anyE€ .7 (Q;), lete;(i=1 2 3 4) be the edges ofE, Q:(i= 1 2 3 4) are them idponts of e; (i=

1 234), we derive
4 2
) |]~211(E): Z[ 1 ds — 1 ;d] =
| e; | € | €; | €j

ij=1

4

M (#w(Q:) - #0(Q;) ) < Z‘, | o i)
KCEKET, (%)

=1
Sunm ng over all E€ .7( Q) gives
Lo e, < T 2iv liia,). (8)
(6) follows fran (7) and ( 8).
By mnterpolation estinate”, the follw ing result is easily to get
Lemma 2 llo= Qoo < b’ 1 wlieg,, . Yo €H (8.
M oreover for he operator I, the follav ng result is obvbus
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Lenma 3 For anyv€X, (Q, ), then
Y 172
Qs Quvly,, =T Qvoly,, N, =

1/2

v
|| ] Qy v Iym(k) - lei Iym(’ || Lz(y ﬁ | v |H1/£2) (9)

n(k)

| v |Hl(£2k),

Proof Fran he defnition of the operator. 7, and I', we can see
v=T Qyuvw on Yy, YV oEXW(Q) n=vlh

m(k)*

Using Lanma 1, Lenma 2 irace theorem and above equality we deduce
|| (_)5 ]Y Qy v lymrk) - IYQY v |ym(k) || L2(Y, ) ﬁh;{/z ///kl} |Hl/2(y )ﬁ h}i/z |//ZAU |Hl(£2k) ﬁh/i/z lv lHl(Qk)‘
Hence the first nequality holds for the second inequality we have

Y
|| [ Qy /Uly;n(k)_Qy/Uly ) ||L7(y )— ||~//5k v— Qyw || Lo(y

m (k)
W) =e%2&(w L (#v-0.0)ds  (10)
where Q. v, =Qrv, eC 2e C T (Tyi), and Qo is the L orhogonal pwojecton onto one dinensbnal space
which consists of constant functbns on element 2e on %" (Yur) ). Using the scaling argument n [ 5], for any

constant ¢ we have
Jf.//gm- ) ds =< hy f//k v-c) B Wl Hv-cllig X b | Hvlie =X | v lig

which togetherw ih (10) and Lenm a 1, gives
2 2
17 Quol,, —Qwly, Wen,, ) Sh” 12 ooy <™ 1o,

Sowe have canplete the pwof

3 ErrorEstmate

In this sectbn, the erorbetveen the discrete solution of (5) and the solution of (2) & estim ated
The follow ng result is the wellknown second Strang Lemm a
Leanma 4 Letu and w, be solution of (2) and (5) respectively then

8quS

Won
luw—- w |HI(Q flu—’Ulﬂl(Q + sup | [ 11
v HL(Q) én e Z:le T w |Hh(Q) (11)

The first term n (11) is known as the appoxmation error while the second tem is calkd the consistency error

Lemma 5 Lety, w, be the solution of (2) and (5) respectively u |QAEH (9 ), thenwe have
N N

DD Jauwdsl< (ZhA | u |m))2 |0 byrio, V0 E Vi

k= 1E€ ()

Proof Note that

A &
k= IEE /(QU J ©ds = k EEZh;DU[eEE\I Ja’LwdS+ 1‘;;1‘ Fw[ al[m]d;’ (12)

where e is an edge of E, [ ®] denote the junp of @ across I';.

The first teim in the right hand of ( 12) can be estmate by stand aigument
N

| I;EE ;Qk)e&;r : gzmd8|< (th u l”z(“))z Lo i, (13)
For any Y,x)= &) = 'y, by themortar condition
J%‘L[wjdsl = | r%j/(wk = Quo )+ (Quer = 1 Qo) +
(T Qo = Qs Quon) + (Quor— ©))ds IS
20y 0= Qe Ny + 110w 00 = 10w ey +
17 Q0= Qs I Qo Il o) + 11Q50, = o Ml e =
20y (Fy + Fae Bt B (14)
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Trace theorem gives

du

1/2
|| El || Lz(r“, 2 | u |H2(QAUQ]) (15)

An application of the san e argument as n the proof n (9) gives
12 12

F. X h |(*)|H}11(Qk), F, X h

172

| © |H’11(Qk), F4 2 h1

| @ ly1q)).
ey

ForFs; byLenma 3 we have
172

F < hk |(*) |th(9k)'
Above four nequality and (14) yeld

Ou
FJ:EL[w]dS = hi L lizgeue) (19 nla, +1 9 1yca)),

where the assumptbn b, < Ay is used  Summ ng over alll', € T, using (12) and (13), the desired result fo+
bws
Lanma 6 For anyu€ Ho(Q), ulo €H’(Q,), itholds that

172

A L= vl < (th L sy )"
Proof LetT,'y € X, (€ ) be the mierpolation ofu n X, (&), wehave the follow ng estmate
lw = Thullpiay + i L w= Thuluya, < bl | ulyzo,. (16)
Define v lo, = Iy k=1 ..., N. The functionv€ X, (Q) may not satisfy themortar cond ition acwss the nter
faces Sowe need to construct an opemtorEam”/: X (Q) X, (Q) by
JH (o) ds = j[ Ovoly,, —vly,ds e€ T (&)

0] otherw ise

Then for any vE Xu(Q), let

<
1l
<
+
[1]

8,0, (V)
where the sum is taken over all nonm ortars

W e can check hatv€ V,. Fran (16), weknow

m/l)

~ —_ ~ ‘ 2 2 172 —_
| u—11|H)|(9) lu-v |H'I(Q)+ | 56(“(1)) lH}l,(Q) < ( E,hk | ule(Qk)) + | B ( ) |HI(Q)
! ! ~
For each nonmortar edge §,;, we can deduce

~ - ~ 2 1
[ =800 v |H’]L(Q) = E{(O) ﬁy ('“@(1 ’U) | X

EE F(Q)K & lel

~ 2
e.&%(u vds) =

-2 ~ 2
hy . ( ﬁ? s(1 Q\v Ly = v g, Jds)” =
é /h m([)

hz (“ [ Qy /,,u— Hhu||fz(am(l/)) <
hz_l(“ [YQY b — Qy H:u”iz(ru) + 1 Q. qu— qu”fzﬁz) +
| Thu - u||fz(ru) + 1l hu - u“LZZ(W ) (17)
by a sinilar argzment as n the proof n (9), twrace theorem, Leanma 3 and (16), we obtan
7 (R qu - Qv Hﬁu I Lz(rH) =< ”2 I H;,u [l Yoy h:/z
IOy Iy - H;:LLHLZ(I'W < Uju””l(gk) A lr2c0,),
W= ullze, < (B u- Hﬁiullmk) i Lu= Tu e, )" < W”

1 -1 l 2 1 2
|| th u — u||L2(1*W ﬁ (h/ “ u — Hh u||L2(QI) + h[ |u— th u |H11,(Ql) )

| u |H 2(9Q)»

| u |1]2(Qk),

172 3/2
h[ | u |H2(Ql).

Above four nequalities and ( 17) yieHd

|2 sm”) v |HIII(Q) < hk e |H2(Qk) + h[ [ |HZ(Q[).

Summ ng over all nonmortars §, ;) C 0Q; and aftew ards over the subdamains we canplete the proof
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Fran Lenm a4 - Lemma§ we now state our conclusion conceming the error estin ate
Theoran 1 Letw, w, be the solution of (2) and (5) respectively u |Q,LEH2 (Q), then

N
2 2 172
| u—w |th/sz) =< (;hk | u |H2/Qk)) .

4 Numerical Experments

In this sectbn, we present the resulis of sane num ercal experments which show that he mortar elanent

method with wtated (1 element is optmal Forproblen (1), let Q= [Q 1/ x/Q 1], the danan Q is divded
nto wo ad pcent subdamamns each subdaman & divided nto a grid of snaller riangles the meshes do not
match on the nterface W e assign Q= [Q 1/ X/ (Q 0.5/ ismortar subdanain €= [/Q 1/ X/0.5 1] isnon-
moriar subdanan Assun e that he exact soltion of (1) su=x(1-x)y(1-1y).

By Gauss elm natbon method we get the resulis asTable L In ths table h, (k=1 2) is them esh size in

F (), w denotes the solution of (5).

Table1l The error betwveenu and u,

h]l hil lu—u, IH},(Q)
6 4 Q0 381338
12 8 Q 0194108
24 16 Q 0098159
48 32 Q 0049436
96 64 0 0024833
192 128 Q 0012454

Fran Table 1, we can see themortar element method cou b Ing w ith rotated )y elan ent is optinal
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