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Continuous Pre-ordered Sets
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Abstract The concept of continuous pre-ordered sets and its bas it properties are ntioduced It & showed that the cate-
gory CPOSET of continuous posets and Scott continuous finctions s a reflective subcategory of the category CPRSET of
contiuous pre-omered sets and Scott con thuous functons
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LetL be apreouered set o bE L XS L. W e say thata is a lower bound ofX (b is a upper bound), pro-
vided thata<x for allx€X (x<b forallx€X ). The setofall lwer bounds ofX isw ritten ale( the setofall
upper bounds ofX iswritten asX" ). If the set of upper bounds ofX hasmininal elements we call these ele-
ments the least upper bound andw rite it as AX. Clearl VX = D'ND". Sin ihrly the greatest bwer bound is
written as AX. We know that VX and AX may have more than one elament Wewrite ! X = (y€ L: y<x for
sanex€X) and t X = {y€ L xSy for smex€X ). The folbwing resuls are sﬁaghtfowardlll.

Lemma 1 For a subsetX of a pre-ordered setl, the follow ing conditbns are equ valent

(1) X isdirected

(i) $ X is directed

(i) + X is an ideal

Leanma 2 The follow ng cond itions are equvalent for. and X as n Lemma 1:

(i) VXZ=;

(i) VIXZ=,

If these conditbns are satisfied then VX =V I X. Moreover if every fnite subset of X has least upper
bound and ifF denotes the setof all hese fnite least upper bound then F' isdirected and (i), (i) are equiva-
lent to

(i) VFZ=,

Under these circumstances VX = V F.
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1 Continuous Pre-ordered Sets

Definition 1 Letl be apre-ordered set W e say thatx iswaybebwy, n synbolsx<y ifand only if for
all directed subsesDE L withVDZ=, te relation yEDul alvays inplies the existence of a d€ D w ih x <d.
An elanent satisfyng x < x is called canpact

By Lenma 1 and Lenma 2 we know that directed subsetsD in Definitbn 1 can be substiuited by ideals /
and theway-bebw relation can be defned equivalently by the follow ing property:

x<y if and only if Orevery subsetX S 1, the relation yEXu[ alvays mplies the existence of a finite subset
AS X such hatx€A".

Proposition 1 In a pre-ordered setL the follw ng statanents hold for allu, x y z€ Lk

(i) x<y mpliesx<y;

(i) u<a<y<z mpliesu< z

(ii) <z and y<z mplyu< z forallu€ xV y, ifxVy exists nlL.

Definition 2 A pre-ordered setL is called conthuous if it satisfies the follow ng cond itions

(C) Forallx€L, the set¥x={yEL y<x) & directed n

(C) x€ (U x)ul, for allx€ L.

Exanple1 LetX be asetwith X 2R, 2' isthe power setofX. Defne a pre-order on 2" as folbw ng
U veld, USveIUuISIvl

The card nality ofU isdenoted by [UI. Then U< V obvbusly mpliesUK V. Conversely ifUKV, then e+
therU< V, if V12K, or U<V, if 1VI< Ko Thus 2 is a continuous pre-odered set This exanple also m—
plies that U< V=USV, but he converse is not tue

Proposition 2 (i) In a pre-ordered setL, the bllow ng conditions are equivalent

(1) x<y,

(2) x€ I for every ideal I of L such thaty€ 1

(3) x€ENJ(y) J(y)= (I€ L yE I'}.

(i) Suppose hat there exists a directed setD<S U x with x€ D“. Then U x is directed and x€ (U x)".
Furthemore, y<x ify<x n the pre-oddered set I x with the mduced pre-order

Proof (i) (1)=(2) Clearly

(2)=(1): Assume (2) and letD be a directed subset ofL with VD Z = and y€ D". Thenl= ! D is an
ieal and y€ D"'= 1" Thenx€1 by (2), ie there 8 ad€D such thatx<d. Hencex< y.

Conditbn (3) is st a refomulatbn of ( 2).

(i) Lety<sx, z<x Theny<d, and z<d. for smed,, d.€D. Pick d€D such thatd,, d.<d. Then y<
d, z<d andd< x. Thus ¥ x isdirected Ify<x n! x andx€ (U x)"l, heny<d for smed€ U x, soy<x in
L by Proposition 1 ( ii).

Propositbn 2 gives a sufficient cond ition for a pre-ordered setL to be conthuous And ifL & a contnuous
pre-odered sel y<x ind xSy<x nl.

W e say that theway-below relatbn on a pre-ordered setl. satisfies the strong ntempolaton property, provik
ed that the follow ng condition is satisfied for ally, z€ L

(Sh x<zandze (U x)" >3y x<y<z ye(Ua)'

W e say hat the way-below relation on a pre-ordered set L satisfies the nterpolation property if and only if
he follw ing weaker conditon hoHs for allx, z€ L:

(NT) x<z mples (3 y)x<y<z

Clearly, (SI) mplies ( NT); ifL & a continuous pre-orered sef then both conditbns are equ valent

Theoran 1 LetL be a continuous pre-ordered set the follow ng cond itions hold for allx, z€ L:

() Ifx<z ze (U x)"l and z€ D" for a directed subsetD ofL, thenx<d d« (4 x)"l for same elementd
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€D.

(i) Ifx<z ze (U x)lll, then there exists ay such thatx<y<z and y ¢ (U x)ul.

Proof (i) LetD be a directed set such thatz€ D", and letI=U {4 d d€ED}. AsL is a contiuous
pre-ordered set [ is an deal as a directed union of the deals ¥ d and [''=p""
hatx€ [ that is there is an el entd €D, such thatx<d Asze (4 x)uz
€D withee (U x)ul. Replacingd by a canmon upper bound of ¢ andd nD, we have bund the desired ele-

ment

Fran x<z we now conchde

ul .
and z€E D", there is an element ¢

ul

(i) ChooseD =V z. AsL is a continuous pre-odered set D is directed and z€ D", Ifx<z andze (U
ul

x)"l, by (i), we fnd an elen enty€ D, thatis x<y<z andy# ({4 x)".
Proposition 3 Let /L:: i€ 1} be a fam ily of continuous pre-ordered setsw ih m nimun element 0; for each

L;, then the direct product gLi is also a continuous pre-ordered set Forelmentsx= (x;)e; andy = (y;) e,

n ];l L;, thewaybelw relation is given by x< y if and only ifx;< y; for alli€ I andx; = 0; for all but fniely
i©l

many i€ I

A functonp: L Lis denpotent if and only ifpp=p. A projecton operator ( shortly pojection) is an den—
potent monotone selfmap ;r L™ L A closure operator is a projectbn ¢ onL with 1, <c¢ A kemel operator is a
projecton k onL w ih k< 1,.

Lenma 3 Fora projectonp on a pre-orered setl, consder its magep (L) nL with the nduced pre-ox
der Then the folbwing properties hold

(1) IfX is a subsetofp(L) which VX exists n L, then VX exists inp (L) andp (V. X )S V0, X.

(i) In additon, ifp preserves directed least upper bound ie V f(D ) exisis nL andf(VD )=Vf(D)
for every directed setDS L with VD Z=, then for every directed subsetDEp (L) withV , D#=, V ., D#*
= andV, D=V, D.

Proof (i) LetXSp(L) andV, XZ=. Fum x€ (V. X ) we deduce thatx=p (L)€ [p(V.X)]'
for every x€X by hemonoton icity and the denpotency ofp. Sop(V . X )SX,u,. Foreverya€X,,,, wehave
a€X,. Thena=p(a)€ [p(X,)]'. Hencep (V,,X)EX:Z,. Sop(V,X)EV,u, X.

(i) DS p(L) isdirected and V , D Z=, then by (1), p(V.D)S V,u, D. Ifp preserves directed
least upper bound then by denpotencep (V. D )=V, p(D )=V ,D and V ,., DSp (VD ). Hence VD
=V,u D.

Exanple 2 In Lenma 3( 1) the converse inchisbn is not tme For ex

N aQe=—=201%

anple L is a pre-ordered set (see Fig 1) andp: L L B a projection

x, ix€EXU{a b); y

p(x)= .

b ifx =y :

Then V) X={a b} %p (VX )= {b). X
Theoran 2 Letl be a continuous pre-ordered set and p: L = L a pro-

jectbn and preserves directed least upper bound Then he magep(L) with
he pre-order nduced fum L is a continuous pre-ordered set toa Forx y€ L
p(L), we have Fig.1 Set L

x<,)y ifand only if here is an elmentu€ L such thatx<p(u) andu
LLy.

Proof Lety€ p(L) be given AsL is contnuous the set{ .y is directed and p(y) €V, p(V 1y). As
yEp(L), wehavey=p(y). By Lanma 3 we havey€ V., p(U .y ). Thus it suffices to prove thatp (u)
<,y wheneveru< ,y for the contnuity ofp(L ). For this letu be an elament of L such thatu<,y Consider
any directed subsetD < p(L) such thaty€ D)y, =Di'. Asu<,y, wefind ad€D such hatu<d. Thenp (u)
<p(d)=d by hemonotonicily and dempotency ofp. This shows hatp (u) <,u, ¥ For the second part of the
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clam, supposex, y€ p(L) andx<,)y. Asy€ D,’,‘i,l) =D} by he above there is au€ L with u<,y such that
xS<p(u). The converse has already been shown i the first part of he proof

A s kemnel and closure operators are particular k nds of projectons  the prevous results hold for mages un-
der kemel and closure operators pwoviled that they preserve directed least upper bound The characterization of
he way— below rehtbn on the mage can be smplified as follows

Ranark 1 For akemeloperator & and a cbsure operatorc on a con tinuous pre-odered setl, both preser
ving directed least upper bound we have

(i) Forallx y€k(L), onehasx< .y if and only ifx<,y.

(i) Forallx y€ I one hasx<,y=c(x) <) c(y).

2 Scott Topolgy and Scott Continuous Functions on Pre-ordered Sets

Definition 3 A subsetW of a preordered setL is called Scott closed if for every directed setDS W w ith
VDZ= nl, we haveD"'S W. The can plemeent of a Scott closed set is called a Scott open set The collectbn
of all Scott open subsets on L. will be called the Scott topobgy of L and w ill be denoted by 0 (L ).

Reanark 2 (i) A Scoit closed set is a bwer set

(1) ¢k fx}=1x O(L) snotaTy topobgy

(i) A setU isScottopened ifand only if it is an upper setand ® ZV DS U mpliesD() UZ= foralld+
rected setsD S L.

(iv) IfL is a continuous pre-oxlered set then all set® x(x€ L) are Scott open

(v) A subsetX of a pre-ordered setL has the property (S) provided that the folbw ing condition is satis-
fied

If= ZVDCSX for any directed setD, then there is ay€ D such thatx€X for allx€ D with y <.

A set isScottopen if and only if it is an upper set satisfy ing ( S).

Proposition 4 Letl be a continuous pre-odered set

(i) An upper setU is Scottopen if and only if for everyx€ U there is au€ U such hatu<x

(i) The set of the fom 1 1, u€ L fom abask for the Scott topobgy. Tn particular each pontx€ L has a
0 (L ) neghbothood basis consisting of he set # uwith u< x.

Proof (i) The necessity is inm ediately fran Definiton 2 and Remaik 2 ( iii). Conversely if for every x€
U there is au€ U such thatu<x, then U is union of the sets # u u€ U, which is Scott open by Ranaik 2
(iv), hence U is Scott open

(1) is immed nte consequence of ( i).

Theoren 3 Letf: M~ Z be a function betveen pre-ordered sets The bllow ng cond itions on f are e
quivalent

(1) The nverse mage of each Scott closed subset ofZ is Scott closed

(2) The nverse inage of each principle ideal ofZ is Scott closed

(3) Foreach directed subsetD ofW such thatV DZ=, we havef(Dul)S (/D )UI;

(4) Foreach directed subsetD ofM such thatVDZ=, we havef(VD)SV (D).

Definition 4 A function f S” T betveen pre-ordered sets is Scott contnuous if and only if it satisfies the
equvalent conditons Theorem 3 (1), (2), (3), (4). The category whose objects are continuous pre-ordered
sets and whose morphign s are Scott continuous functions w ill be denoted by CPRSET.

Exanple 3 A Scott continuous functon f M~ Z between pre-ordered sets does not necessarily preserve
directed least upper bound For exanple letM be a pre-ordered set ( descrbed in Fig 2) and f M™M isa
Scott continuous functon f(i)=41=34 3 f(1)=f(2)=2 ClearlyM is a directed setandVM = {1 2).
Butf(VM )= {2) 2V fM )= (1 2).

Theoren 4 The category POSET ( ob jects are posets and morphisn s are Scott continuous functions) & a
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reflective subcategory (see [3] Proposition 3.3.6) of the category PRSET 1=

(objects are pre-ordered sets and morphisms are Scott continuous functions ).

In addition, for a pre-ordered set Q, x<y&[x]<[y] for every x,y € Q.

3
Thus the category CPOSET ( objects are continuous posets and morphisms are
Scott continuous functions) is a reflective subcategory of the category CPR-
4
SET.
Proof Define [x] = {ye Q:y<x and x<y| for every pre-ordered set
Q and xe Q. Then F(Q) ={[x]:xeQ} is a poset. Suppose DCQ is a di- 5
rected set and V D5 & in Q. We have known that [x] =[y] for every x,y e Fig.2 Set M

VD, sor( VD) =[x] for some x € VD. Clearly, [x] is a upper bound of r

[D]. For every [t] e F(Q) with [d] <[t] forevery deD, if [x] <[], then x<¢ and x ¢ D" because of ¢
e D". There is a contradiction with x € VD. Thus [x] <[t]. So [x] =V, ,[d] =Vr[D]i.e. r:Q—F(Q)
(x — [x]) is Scott continuous.

For every poset P and every morphism f;: Q—P, we define f: F(Q)—P([x] — f(x)). As fis Scott
continuous (order preserving) , f(x) =f(y) for every x, ye [«x]. Suppose D' CF(Q) is a directed set and \/
D' exists in F(Q). Then D=U{[d']:d" eD’} is a directed set in Q and VD =[\VD'] in Q. As f(\VD’)
and Vf(D') contain one element respectively and f( V D') =f( VD) CVf(D) =V ,.pf(d') = Vf(D') by
the definition of f and the Scott continuity of f, f( VD') = Vf(D’) i.e. fis Scott continuous. Thus f is unique
and f=for.

Suppose x<y in Q and [y] < V D for every directed set DCF(Q). D'=U {[d]:de D} is a directed set
in Q and ye VD'. As x<y, there exists d e D’ with x<d. Thus [x]<[d] and [x]<[y]. Conversely, for
every directed set D'CQ with ye D, D=U{[d']:d" e D'} is a directed set in F(Q) with VD =[ \VD']
and [y]<[VD']=VD. As [x]<[y], there exists [d'] € D with [x] <[d']. Thus x<d’ and x<y.

3 Categorical Viewpoint

In [3] and [4],we know every pre-ordered set (X, <) gives rise to a small category (X, <) as follow-
ing:
H(%.0)), ix=y

Objects are elements of X, Hom(x,y) = { :
g, otherwise.

A categorical product ( coproduct) HAi( H A;) of a family of objects {a;},_,in (X,<) is Ala;},,(V

{a;! jer) s

Theorem 5 If a small category has products (or coproducts) , then for every pair of objects A,B, mor-
phism set Hom(A,B) has at most one element. Thus every small category which has products (or coproducts) is
isomorphic to a pre-ordered set in which greatest lower bound (least upper bound) of every family of elements
exists.

By Theorem 5, we know that all the propositions for pre-ordered sets in which greatest lower bound (least
upper bound) of every family of elements exists are still valid for small categories which have coproducts ( prod-
ucts).

Proposition 5 Let L be a small category. It has products if and only if it has coproducts.

Proof Suppose L has coproducts. A is an arbitrary subset of L. Let B={beL: 3f,:b—ua,, for every a, €

A}. As L has coproducts, H B exists. We say H B is a product of A. For every a; € A, there exists a unique

morphism r, ; H B — a, with f; =r, o g; for every j. For every family of morphisms {p,:Q0—a,:iel}, then Qe B
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by the definition of B. Thus there is a unique morphismr = ¢:Q — H B with p, =q or, for every i e I. The con-

verse can be proved similarly.
Now we consider Scott continuous functions on small categories with coproducts.

Definition 5 Let L be a small category which has coproducts and A a full subcategory of L. A is called
Scott closed subcategory if and only if for every subset DCA, we have H DeA.

Definition 6 Let M and L be small categories which have coproducts. A functor F; M—L is called Scott
continuous if and only if for every Scott closed subcategory ACL, F~'(A) is a Scott closed subcategory of M.
Theorem 6 If M and L are small categories which have coproducts, then a functor F: M—L is called Scott

continuous if and only if F preserves coproducts.
Proof “="Supposes an arbitrary subset A of L and H A exists. We have to prove that F( H A) is a
product of F(A). For every family of morphisms {f;:F(a;)—Q:a,eA,iel}, there exists a unique morphism

r: H F(A)—Q with f, =rogq, for every i eI, qi;F(A)—+H F(A). In particular, for a family of morphisms
{pi;ai—>H A:iel}, we have a unique morphism r, H F(A)—F( H A) such that F(p;) =r, o g, for every

i € l. Thus there exists a unique morphism r’; F( H A)—Q such that f; =r" o« F(p,) for every i e I.

“«="For every Scott closed subcategory ACL, we suppose that D is an arbitrary subset of F ™' (A). Then
F(D) CA and H F(D) CA. As F preserves coproducts, we have F( H D) CA. Thus H DCF'(A).

F~'(A) is a Scott closed subcategory and F is Scott continuous.
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