两种基于苯并咪唑衍生物配体的新型铱(III) 配合物的合成及发光性能研究

徐治安,蒋晓青,孙培培

(南京师范大学化学与材料科学学院, 江苏 南京 210046)

[摘要] 合成了新型配体 N-异丙基-2-苯基苯并咪唑 (bi)和 N-异丙基-2-(4氟苯基)苯并咪唑 (bi),并用它们与 三氯化铱和乙酰丙酮反应,制备了相应的环金属铱 (III)配合物发光材料 (bi)_1r(acac)和 (bi)_1r(acac) (acac =乙酰丙酮). 对其结构用¹H NMR和元素分析方法进行了表征,研究了配合物的 UV-vis 荧光光谱及电化学性 质. 两种材料的最大发光波长分别位于 514 mm 和 493 mm.电化学研究表明,在苯环上引入氟原子后,配合物的 HOMO和 LUMO间能隙增大 (分别为 0.12 eV 和 0.15 eV),与最大发光波长蓝移结果吻合.

[关键词] 电致发光,铱(Ш)配合物,磷光材料,合成,性能

[中图分类号] 0614.82⁺5 [文献标识码] A [文章编号] 1001-4616(2011) 01-0059-05

Synthesis and Lum in escent Properties of Two New Ir(III) Complexes Based on Benzoim idazole Derivatives

Xu Zhian, Jiang Xiaoqing Sun Peipei

(School of Chem istry and Materials Science, Nanjing Normal University, Nanjing 210046, China)

Abstract New ligands N-isopropyl-2-phenyl-1H-benzoin idazole and N-isoprop-yl-2-(4-fluorophenyl)-1H-benzoin idazole were prepared and their corresponding cyclometalated complexes (bi)₂ lr(acac) and (fbi)₂ lr(acac) (acac = acetylacetone) were synthesized by the reaction of these two ligands with IC b and acetylacetone. The structures of the complexes were characterized by ¹H NMR and elemental analyses. The UV-vis and photolum inescence (PL) spectra were determined, and the electrochemical behaviors of the complexes were studied. The complexes had strong photolum inescence in dich brome thane at 514 nm and 493 nm, respectively. The electrochemical study showed that the energy gap between the HOMO and LUMO was enlarged by introducing fluorine on the benzene ring (0.13 and 0.15 eV respectively for two complexes), which was in accordance with the blue shift of the maximum emission wavelength. **Key words** electrolum inescence, Ir(III) complexes phosphorescent materials synthesis properties

有机电致发光器件 OLEDs(Organic Light Emitting Devices)具有材料选择范围宽、驱动电压低、能耗低、超薄等优点,正在成为新一代性能优异的发光和显示器件. 自 Tang^[1]和 Burroughes^[2]等各自报道了具有重要意义的有机电致发光器件以来,有机电致发光材料在学术界和电子技术领域引起广泛关注. 近年来在 OLED研究上最具突破性的发展之一是电致磷光材料的发现,磷光材料既可通过单线态,又可通过三线态激子去激活发光,可突破有机小分子荧光材料 OLED 最高内量子效率为 25% 的上限^[3-6]. 目前的磷光材料主要包括一些重金属配合物,如锇(II)、铂(II)和铱(III)的配合物,其 4d 或 5d 离子结构上强烈的自旋 – 轨道偶合导致单重态和三重态能级的混合而出现三重态发光,从而使得材料的内量子效率可由 25% 提升至近 100%^[7-11],这些配合物的发光颜色、效率等与配体结构有直接关系,其中铱(III)配合物因其较高的发光效率而最受关注,其发光可覆盖整个可见光区,通过设计合成适当的配体,可得到不同颜色的发光体,并可对材料的发光性能进行改进,从而获得高性能电致发光器件^[12]. 例如,在配体上引入不同 取代基或改变共轭体系大小,都可对材料的发光性能产生影响,引入适当的烃基则有可能通过空间效应减

收稿日期: 2010-03-05

基金项目:国家自然科学基金(20772057,20773066).

通讯联系人: 孙培培, 教授, 研究方向: 有机化学. E-mail sunpeipe@ njnu. edu cn

少发光自淬灭从而提高器件的发光效率^[13].进一步研究、设计新型结构的电致磷光材料,提高其亮度、效率和使用寿命具有重要的学术和实际意义.

本文在前期系列工作基础上设计合成了两种新型的苯并咪唑类化合物 N-异丙基-2苯基苯并咪唑和 N-异丙基-2-(4氟苯基)苯并咪唑,并通过与铱的环金属化反应合成了配合物磷光材料(bi)₂ Ir(acac)和 (fbi)₂ Ir(acac),研究了它们的紫外吸收光谱、光致发光光谱和电化学性质,为进一步研究其在电致发光器 件中的应用打下了基础.

1 实验部分

1.1 试剂及仪器

所用试剂均为分析纯, 部分试剂按常规方法进行了纯化. 核磁共振光谱用 Bruker ARX-400型核磁共振仪测定, TMS为内标; 紫外 – 可见光谱用 Hitachi U-3300型紫外 – 可见分光光度计测定; 荧光光谱用 Hitachi F-4500荧光光谱仪测定; 循环伏安曲线由 CH 1660C 电化学工作站获得.

1.2 材料合成方法

配体和配合物的合成路线如下所示:

1.2.1 配体 N-异丙基-2-苯基苯并咪唑 (bi)的 合成

邻苯二胺 2.2 g(20mmol)和异丙基溴 2.5 g(20mmol)溶于 40mL DMF中,于 40℃反应 48 h,得 N-异 丙基邻苯二胺 2.5 g 产率 67.5%.将苯甲醛 1.2 g(11mmol)和 2.5 g N-异丙基邻苯二胺溶于 40mL乙二醇 甲醚,回流反应 10 h,减压蒸去溶剂,粗产物经柱层析分离(固定相为 300~400目硅胶,洗脱剂为乙酸乙 酯:石油醚 = 4:1的混合溶剂)得 N-异丙基-2苯基苯并咪唑,白色固体 1.8 g 熔点 92℃,产率 63%.

¹H NMR(CDC_b): $\delta 1.68$ (d, J = 7.2H z, 6H), 4.82 - 4.84 (m, 1H), 7.28 - 7.32 (m, 2H), 7.53

~ 7.55 (m, 3H), 7.65~7.69 (m, 3H), 7.85~7.88 (m, 1H). 元素分析: 计算值 ($C_{16}H_{16}N_{2}$): C, 81.32 H, 6.83 N, 11.85 实验值: C, 81.05 H, 6.97 N, 11.98 $\mathbb{R}(\nu/cm^{-1})$: 3015, 2948, 1720, 1600, 1517, 1436, 736

1.2.2 配体 N-异丙基-2-(4氟苯基)苯并咪唑(fbi)的合成

将 1.2.1中苯甲醛换成对氟苯甲醛,按相同的合成方法,即可得到 N-异丙基-2-(4氟苯基)苯并咪唑 (fb i), 白色固体 2.1g 熔点 98°C, 产率 69%.¹H NMR (CDC k): δ 1.68 (d J = 6.8 H z 6 H), 4.77~4.84 (m, IH), 7.22~7.33 (m, 4H), 7.63~7.67 (m, 3H), 7.83~7.86 (m, 1H). 元素分析: 计算值 (C₁₆H₁₅ N₂F): C, 75.57, H, 5.94, N, 11.02 实验值: C, 75.85, H, 5.86, N, 10.93 IR (ν /cm⁻¹): 3 023, 2 978, 1 715, 1 595, 1 497, 1 475, 807

1.2.3 铱 (III) 配 合物 (b i) 2 lr(acac)的 合成

称取 0.52 g (2.2 mm o l)配体 bi溶于 10mL乙二醇乙醚中,加入 hC k・ 3H₂O 0.34 g (1mm o l)的 3mL 水溶液.反应混合液在氮气保护下于 120℃反应 24 h, 冷至室温,过滤,沉淀依次用乙醇、丙酮洗涤,真空 干燥得环金属化的氯桥联铱二聚体粉末,收率 76%.将上述二聚体溶于 15 mL乙二醇乙醚中,加入 0.2 mL (2mm o l)乙酰丙酮和 0.32 g (3mm o l)碳酸钠.反应混合液在氮气保护下回流 12 h, 冷至室温,有黄色 沉淀析出.过滤,分别用水、乙醇和乙醚洗涤.柱层析分离(固定相为 300~400目硅胶,二氯甲烷为洗脱剂)得配合物(bi)₂ lr(acac),收率 71%.¹H NMR(CDC k): δ 1.76 (ς 6H), 1.87 (d J = 7.2 H \sharp 6H), 1.92(d J = 6.8H \sharp 6H), 5.14 (ς 1H), 5.72~ 5.77 (m, 2H), 6.41 (d J = 7.4H \sharp 2H), 6.56~ 6.59 (m, 2H), 6.80 (d J = 7.5H \sharp 2H), 7.24~ 7.32 (m, 4H), 7.64~ 7.73 (m, 6H).元素分析:计算值 ($C_{37}H_{37}$ LN₄O₂): C, 58.33 H, 4.89 N, 7.35 实验值: C, 58.73; H, 4.76 N, 7.26 R(ν/cm^{-1}): 3 014, 2.970, 1.726, 1.610, 1.578, 1.517, 1.436

1.2.4 铱 (III) 配合物 (fb i) 2 Ir(acac)的合成

将 1.2.3中 bi换为 fb;按相同的合成方法,可得到 (fbi) 2 h(acac),收率 75%.¹H NMR (CDC h): δ1.78 (s, 6H), 1.88 (d, J=7.2Hz, 6H), 1.91 (d, J=6.8Hz, 6H), 5.18 (s, 1H), 5.64~5.67 (m, 2H), 6.00~6.03 (m, 2H), 6.54~6.59 (m, 2H), 7.24~7.28 (m, 2H), 7.29~7.35 (m, 2H), 7.62~ 7.68 (m, 6H).元素分析:计算值 (C₃₇H₃₅ F₂ hN₄O₂): C, 55.70, H, 4.42, N, 7.02 实验值: C, 55.48, H, 4.56, N, 6.90 R(V/cm⁻¹): 3.024, 2.970, 1.731, 1.610, 1.570, 1.517, 1.436

2 结果与讨论

2.1 配合物的结构表征

在红外图谱中, (bi)₂ Ir(acac)在 3014 cm⁻¹和 (bi)₂ Ir(acac)在 3024 cm⁻¹的强吸收对应于芳环 C-H 伸缩振动, 1726 cm⁻¹和 1731 cm⁻¹处中等强度的吸收为苯环上 C= C伸缩振动, 1578 cm⁻¹和 1570 cm⁻¹的 强吸收对应于 *a*, β-不饱和酮的羰基 C= O 伸缩振动, 说明环金属化反应成功, 结合¹H NMR 和元素分析, 进一步说明配合物结构与设计结构一致.

2.2 配合物的发光光谱 (PL) 和紫外 - 可见吸收光谱 (UV-V is)

图 1和图 2分别为配合物二氯甲烷溶液 ($1 \times 10^{-5} \text{ mol/L}$)的紫外吸收光谱和荧光光谱. 配合物的紫外 光谱: (bì)₂ Ir(acac)在 310 nm 和 369 nm, (bì)₂ Ir(acac)在 314 m 和 366 m 各有 2个吸收峰, 较短波长的 吸收峰为自由配体自旋允许的单线态 $\pi^{\rightarrow} \pi^*$ 跃迁. 根据文献已经报道的此类配合物的性质以及 Hay的 有关理论的计算结果可知, 较长波长的宽的吸收峰对应于配合物的金属到配体的电荷跃迁 ^[14]. (bì)₂ Ir (acac)和 (bì)₂ Ir(acac)的起始吸收波长 (λ_{onset})分别为 432 nm 和 416 m, 由此可计算配合物的最高占有 轨道 (HOMO)和最低未占轨道 (IUMO)之间的能隙 E_g 二者分别为 2. 87 eV 和 2. 98 eV, 计算公式为:

 $E_{\rm g}({\rm eV}) = {\rm h} \mathcal{O} = {\rm h} c / \lambda_{\rm onset} \approx 1.241 / \lambda_{\rm onset}({\rm nm}).$

配合物的荧光光谱:配合物 (bi)₂ Ir(acac)和 (fbi)₂ Ir(acac)的最大发光波长分别为 514 nm 和 493 m, 由此可见在引入氟原子后 (fbi)₂ Ir(acac)的最大发光波长相对 (bi)₂ Ir(acac)蓝移了 21 nm,配合物材料 (bi)₂ Ir(acac)和 (fbi)₂ Ir(acac)在 543 nm 和 521 nm 各有一个肩峰.引入吸电子的氟原子使材料发光波长 产生了明显的蓝移,这与我们前面的报道一致^[15].这个结果也将为进一步设计较为稀缺的蓝光发光材料 提供借鉴.

2.3 配合物的电化学性质

图 3为配合物的循环伏安曲线. 实验采用三 电极系统在二氯甲烷溶液中测得, 配合物浓度为 1.0×10^{-5} mol/L,支撑电解质为六氟磷酸四丁基 铵,浓度 0.1 mol/L 氧化峰电位: (bi)₂ Ir(acac)和 (fbi)₂ Ir(acac)分别为 0.79 V和 1.00 V. 配合物 的 HOMO 能级的计算采用文献 [16]的方法, 二茂 铁 (Fc)为内标. 计算公式为:

HOMO能级 = $-(E_{ox} - E_{1/2, Fc}) - 4.8$ eV, 能隙 E_g = LUMO-HOMO.

(*E*_{re}为配合物还原峰电位, *E*_{ox}为配合物氧化 峰电位, *E*_{1/2 Fe}为二茂铁半电位)

配合物的能级: 二者的 HOMO 能级, (bi)₂ Ir (acac)为 - 5.10 eV, (fbi)₂ Ir(acac)为 - 5.29 eV.

由 2.2紫外光谱部分的计算可知, 二者的能隙 E_g , $(bi)_2 lr(acac)为 2.87 eV$, $(bi)_2 lr(acac)为 2.98 eV$. 可见配合物 HOMO轨道能级, $(bi)_2 lr(acac)较 (bi)_2 lr(acac)下降 0.19 eV$, 而配合物 HOMO 能级和 IUMO 能级之间能隙 E_g , $(bi)_2 lr(acac)$ 的较 $(bi)_2 lr(acac)$ 增大 0.11 eV, 这说明在配体上引入氟原子后, $(bi)_2 lr(acac)$ 的 HOMO 能级和 LUMO 能级同时下降, 只是后者下降较前者为小, 所以能隙 E_g 增大值 0.11 eV 较 HOMO 降低值 0.19 eV 为小. 能隙 E_g 增大可解释发光波长的蓝移.

表 1	配合物主要性能参数
-----	-----------

Table 1 The main properties of the complexes

配合物	$\lambda_{max abs} / m$	λ _{m ax en i} /m	$E_{\rm ox}$ /V	$E_{\rm g}$ / eV
(bì) ₂ Ir(acac)	310, 369	514	0. 793	2. 87
(fb i) $_2$ Ir(acac)	314, 366	493	0. 996	2. 98

3 结论

综上所述,本文设计并合成了两个苯并咪唑衍生物 N-异丙基-2-苯基苯并咪唑(bi)和 N-异丙基-2-(4-氟苯基)苯并咪唑(bi),以其作为环金属化主配体,进而合成了 2个新的铱配合物发光材料(bi)2 lr(acac) 和(bi)2 lr(acac),研究了它们的吸收、发射光谱及电化学性能.两种配合物均呈现明显的磷光发光特征. 发光波长主峰部分分别位于 514和 493 m. 研究结果还表明, 在主配体上引入吸电子基氟以后, 材料的最 大发光波长显著蓝移, 这对设计合成目前仍较缺少的蓝光发光将提供借鉴. 这两种材料有望在电致发光器 件中获得应用. 进一步的应用研究正在进行中.

[参考文献]

- [1] Tang C W, VanSlyke S A. Organic electrolum inescent diodes[J]. Appl Phys Lett 1987, 51(12): 913-915.
- [2] Burroughes JH, Bradley D C C, Bums P L, et al Light-on itting diodes based on conjugated polymens [J]. Nature, 1990, 347: 539–541.
- [3] Kwong R C, Sibley S, Dubovoy T, et al Efficient saturated red organic light en itting devices based on phosphorescent platinum (II) porphyrins[J]. Chem M ater, 1999, 11(12): 3 709-3 713.
- [4] Baklo M A, O' Brien D F, You Y. Highly efficient phosphorescent em ission from organic electrolum inescent devices [J]. Nature, 1998 395 151-154.
- [5] Kohler A, Wilson J Friend R H. Fluorescence and phosphorescence in organic materials [J]. Adv M ater, 2002, 14(10): 701-707.
- [6] Lee H E, Adachi C, Burrows P E, et al H ighly phosphorescent bis-cyclom etalated iridium complexes synthesis, photophysical characterization, and use in organic light em itting diodes[J]. JAm Chem Soc, 2001, 123(18): 4304-4312.
- [7] Lan ansky S, D jurovich P, M urphy D. Synthesis and characterization of phosphorescent cyclon etalated iridium complexes
 [J]. Inorg Chem, 2001, 40(7): 1704-1707.
- [8] Chen X, Liao J, Liang Y M, et al High-efficiency red-light em ission from polyfluorenes grafted with cyclometalated iridium complexes and charge transportmoiety[J]. J Am Chen Soc, 2003, 125(3): 636-637.
- [9] Duan J P, Sun P P, Cheng C H. New iridium complexes as highly efficient orange-red emitters in orgnic light-emitting diodes [J]. Adv M ater, 2003, 15(3): 224-228.
- [10] Adachi C, Baldo M A, Thompson M E. Endotherm ic energy transfer a mechanism for generating very efficient high-energy phosphorescent emission in organic materials [J]. Appl Phys Lett 2001, 79 (13): 2 082-2 084.
- [11] Gong X, OstrowskiT C, Bazan G C. Electrophosphorescence from a conjugated copolymer doped with an iridium coplexes high brightness and operational stability[J]. A dv M ater 2003, 15(1): 45-49.
- [12] Cesar P B, Montes V A, Pavel A. True blue blue-emitting aluminum (III) quinolinolate complexes [J]. Inorg Chem, 2006, 45(24): 9 610-9 612.
- [13] Zhou G J Ho C L, Wong W Y, et al M an ipulating charge-transfer character with electron-withdrawing main-group moieties for the color tuning of iridium electrophosphors[J]. Adv Funct Mater 2008 18 499-511.
- [14] Hay P J Theoretical studies of the ground and excited electron ic states in cyclom etalated phenylpyridine ir(III) complexes using density functional theory J]. J Phys Chem A, 2002, 106(8): 1634-1641.
- [15] Sun P P, LiC X, Pan Y, et al. Synthesis of novel Ir complexes and their application in organic light emitting diodes [J]. Synth M et. 2006, 156–525-8
- [16] Liu Y, LiuM S. Synthesis and characterization of a novel and highly efficient lighten itting [J]. Acte Polym, 1999, 50 105-108

[责任编辑: 顾晓天]