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Permanence of a Predator —Prey Model
With Impulsive Control Strategy

Tan Yuanshun Xu Xiaoman

( School of Science Chongging Jiaotong University Chongging 400074 China)

Abstract: In the present paper we investigate an impulsive predator-prey model of integrated pest management ( IPM)
strategy. With the help of qualitative analysis method small amplitude perturbation skills and comparison theorem we
show that when the impulsive period is larger than some critical value the system can be permanent.
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In recent decades it is well know that pest invasion has a significant impact on agriculture ecology eco—
nomic environment and so on so it has become more and more popular to control pest by seeking effective strat—
egy. Meanwhile some advanced and modern methods such as chemical biological remote sensing have been a—
dopted accomplishing with the development of society. In this case the conception of integrated pest manage—
ment ( IPM) comes out which was introduced in the late 1950s and was widely practised during 1970s and
1980s ' . IPM is a long+term management strategy that uses a combination of mechanical devices physical de—
vices biological cultural and chemical management to control pests to tolerable levels with little cost to the
grower and minimal effect on beneficial insect humanity property and environment >* . Tt has been proved by
experiment that this kind of controlling strategy is more effective than classical one * .

Models with sudden perturbations describing evolution processes are characterized by the fact that at certain
moments of time they abruptly experience a change of state which are involving in impulsive differential equa—
tions. A general amount of the theory of impulsive ordinary differential equations can be found in Bainov and
Lakshmikantham °° . Therefore impulsive differential equations have developed and attracted the interests of
many researchers in the last two decades and have been widely applied in almost every domain of applied science

in relation to impulsive vaccination impulsive harvesting and stocking chemotherapeutic chemostat turbidostat
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etc .

As everyone knows most of the mathematical models on the interaction of two species have so far assumed
that the response function serves as linear response Holling I Holling IT  Holling IIT  Holling VI Holling-Tay—
lor or Ratio-dependent and so on while releasing nature enemies and spraying pesticide are co-occurring at the
fixed time. As motivated by the above mentioned brief literature the main purpose of this paper is to establish a

mathematical model with Holling Il S-shaped functional response and investigate the dynamics of such a system.

1  Model Formulation

The standard Lotka—Volterra system has been widely investigated. There has been a mount of excellent re—
sults about the effect of ecosystem for periodic change due to season climate living conditions etc * . The well

known continuous predator-prey model of an ecosystem introduced by Volterra ° can be formulated as:

y (1) =Bbx(t) y( 1) —wy(t)
{x’( ) =x(1) (1—%) b 1) ()

where 8 b w and K are positive constants. y(t) and x(t) represent the densities of predator and prey popula—

(1)

tion respectively.
Further we suggest to model such an effect by applying a response function
(¢

Py = L) (2
called the Holling III S-shaped functional response. These coefficients g h are positive constants. Obviously
the response function (2) is non-monotonic. Simultaneously on the basis of the above assumptions and IPM
strategy it is more realistic to assume the leasing of nature enemies and the spraying of pesticides should be im-
plemented at different fixed moment. Therefore considering S-shaped functional response predator—prey system

with different fixed moment impulse the system ( 1) is rewritten as

0 y (1) =pbx(e) y(£) —wy(1)
0 2 _
. _ _x(t) 3 gx([) _ t#(n+l l)Tt#nT
00 =a(0) [1 =] - - 00
B y(l)=—pzy(t)} =(nal-1)T (3)
= 2(1) = -px(1)
0
H y( 1) =M} -
U x(t) =0 -

where y( 1) =y(t") —y(t) =x(t) =x(t") —x(t) w=0 is the released amount of nature enemies at t =nT 0
<p, <1 and 0<<p, <1 are the death rate of nature enemies and pests due to spraying pesticides at t =(n +1[ -
1) T respectively n={1 2 ---}. T is the period of the impulsive effect and the biological meanings of other

coefficients are the same as that of model (1) .

2 Analysis of the Model

From reference 11  we know that the positivity and boundedness of the system can be guaranteed we on—
ly prove the permanence of the system here.
If the pest population x( t) is extinction in ( 3) we give some basic properties of the following subsystem of
(3).
1t) = —wy( 1) t#(n+1-1)T t#nT
t

o

B (1) = —py(1) =(n+l-1)T "
E W) = t=nT

O }’(O+) =%Yo
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System (4) is a periodically linear system and it is easy to obtain that

pwexp —w(i-(n-1)7 . <(mal_
1_(1—p2)€Xp( —wT) ( l)T(l\( +1 1)T

u(l=p,)exp —w(t-(n-1)17)
1 =(1-p,)exp( —wT)

y (1) =

(n+l-1)T<t<snT

with initial value

y (07) =y (nT7) =1—(1—p2)MeXp( - wT)

oy (1 =py) exp( —wlT)
y (IT7) =7 +_ -
1=(1=p,) exp( —wT)
is a positive periodic solution of (4) . Since the solution of (4) is
|:| _ n-1 + _ ,u« _ *
(1) [H00) =y gy |0 ) +2 (1)
(n-1)T<it=(n+l-1)T

u
(0 -t
yit) =0
E (=) "[500) = o iy |0l —0) +57 (0
O (n+l-1) T<t<nT.

Lemma 1 System (4) has a positive periodic solution y* () with

T

. p 1 = pyexp(( = wil) + (1 = p,) exp( - wl)
t)dt = 5
J w 1= (1 p) exp( - ) (5)
and for every solution y( ) of (4) we have Iy(1) —y (1) | -0 as t—oo0.

Lemma 1 implies that (3) has a pest extinction periodic solution (y" () 0). Now we will discuss the
sufficient condition for the permanence of (3) and first give the main theorem.

Theorem 1 System (3) is permanent provided that

w 1 =pyexp( —wlT) (1 -p,) exp( —wT) oL

T - n
w 1 -(1-p,)exp( —wl) 1 -p,

(6)
holds.
Proof Suppose X(t) =(y(t) x(t)) is any solution of (3) with ¥(0) >0 x(0) >0. From Lemma 1 we

p(1 -p,) exp( —wT)
1 —exp( —wT)

large enough. Thus we only need to find an m, >0 such that x( t) =m,. To finish the proof of Theorem 1 we

note that y(¢) >y" (1) - & for all ¢ large enough. Consequently y(1) = —g=m, fort

will finish the proof with two steps.
Step I  From (6) we can choose 0 <m; <w/(Bb) & >0 small enough such that A =(1 -p,) exp

1. b Lol sBm) D) (1 =12) el rgom))_
([1_(K+2h)m3_8]T_ (w-Bbmy) 1-(1-p,)exp(( —w +Bbm;) T) > 1. Next
we will prove x( ) <m, can not hold for all #=0. Otherwise

y (1) <( —w+Bbm,y) y( 1) t#(n+1-1)T t#nT
y(1) = =pyy(1) t=(n+l-1)T
y(t) =p t=nT
then we derive y( 1) <y,(t) and y,(t) —y; (1) as t—o where y,(t) is the solution of
(1) =( —w +pbm;) y( 1) t#(n+l-1)T t#nT
H 50 = -py(d) t=(n+l-1)T
0 _ _ (7)
E yi(1) =p t=nT
U y3(0+) =Yo-

and
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pexp ((—w+Bbmy) (1 -(n-1)1T)
1-(1-p,)exp ( —w+Bbm;) T
(I-py)exp (—w+pbmy) (t-(n-1)17)
1 —(1-p,)exp ( —w+Bbmy) T
Therefore there exists a T, >0 such that

y(1) <y5(1) <y; (1) +e

(n-1)T<t<(n+!l-1)T
y (1) =

(n+l1-1)T<t<nT.

I:II]ZEI:III[II:I

and

[/ I P I CA U R | EO R C A, ()

x(t) = —px(t) t=(n+l-1)T

for t >T,. Choosing a suitable constant Ne Z, and (N +[—-1) T=T,. Integrating (8) on ((n+[-1)T (n+
DT n=N we get

Aln+ D) =alln+ =000 =phew ([ 1= (L v L)m -7 (0 +e) ]ar) =

2((n+1-1)T)A.
One then obtains that x( (N +n+[l-1)T) =zx((N+1) T) A"—w as n—ow which is a contradiction to the
boundedness of x( ¢) . Thus there exists a ¢, >0 such that x,( ¢,) =m,.

Step I If x(t) =m, for all t=¢, then our purpose is obtained. Hence we need only to consider those
solutions which leave the region 2={x e R’ :x, <m,} and reenter the region again. Otherwise x( ) <m; for
some 1=1,. Set t =inf,,, {x( 1) <m;} there are also two possible case for t.

Case I ¢ =(n, +1-1)T n, eZ,. Then we have x(t) =m,forte ¢, t and(1-p,) <x(t *) =
(x=p,)x(t ) <ms,. Select n, n, e Z, such that

(n, =1) T( —w +Bbm,) >lnM87_"_)\ (1-p,) exp( A, T) A" > 1

where A, =1 - (% +ﬁ) —bM <0. Denote T =(n, +n;) T we claim that there must be a t, e (1  +
T"  such that x(#,) >m,. Otherwise consider (7) with y,(¢ ") =y(¢ ) we have
_ n-(ny+1) + _ M _ *
E(l p2) [y(an ) 1_(1_p2) exp ( —w+ﬁbm3)T €Xp ( w+ﬁbm3)t +y (t)
H (n-1)T<t<(n+l-1)T
y:(1) =0 “
D _ (n-ny) [ + _ ] _ *
E(1 Pz) }’(an ) 1—(1—p2)eXp ( —w+Bbm3)T exp ( w+Bbm3)t +9’ (t)
O

(n+l-1)T<t<nT

and n, +1<n<n, +n, +n;. Consequently |y,(t) —y; () | <(M+pu)exp(( —w +Bbm;) (t -n,T)) <eg,
and y( 1) <y,(t) <y; (1) +&,forte n,T+(n,-1)T ¢ +T  which implies that (8) holds forte ¢ +
n, Tt +T" . Asin Step I we get

s

(0 +T) =x(t" +n,T) 1™,
From (3) we get
{ [1—(f+27l)m3—bM]x(t) 1£(n+l-1)T )
x(t) = —px(t) t=(n+l-1)T

forte t ¢ +n,T . Integrating (9) on ¢ ¢ +n,T  we obtain

x( t +n2T) Bms( 1 _Pl) nzexp( ’Lz/\lT) .
Thus we have

x(t +T) =my( 1 =p,) exp(nyA, T) A" > m,
- 4 -
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which is a contradiction.

Let 7 =inf,_ . {x(t) >m,} thenforte(t 1) we have x(7) <m, and x(%) =m,. Forte(t ) we
get

K1) Zmy(1=p) ™ exp (ny +n) A,T |

Let m; =m,( 1 =p,) " exp (n, +n;) A,T  so we have x(t) =m, forte(t 7). Fort>7 the same
arguments can be continued since x( ) =m,.

Case I Ift" #(n+l-1)T neZ, thenx,(t) =m,forte ¢, 1) andx,(t" ) =m; supposet e
((n, +1=1)T (n, +0) T) n, eZ,. Then there still have two possible cases for te(t" (n, +1) T).

s

Case Il —a Ifx(t) <m,forallte(t (n,+{)7T) similarly to Case I we can prove that there exists a t,

e (n,+0)T (n,+1) T+T  such that x(,) >m,. Here we omit it.

Let 7 = inf{x( ) >m,} then x(t) =m,forte(t 1) and x(7) =m,. We obtain that
1> 1" ) : .
x2(1) =my(1-p,) " "exp (n, +ny +1) A, T
forte(t 7). Letm, =my(1 =p,) " "exp (n, +n, +1) A\, T  then (1) =m, forte(t 7). Fort>7 the
same arguments can be continued since x,(7) =m;.

Case I1 -b If there exists ate (¢ (n, +1) T) such that x(t) >m,. Let t"=inf, . {x(f) >m,} then

forte(t 1) we have x(f) <m, and x(¢") =m,. (9) holds true for t e (¢ ¢’ integrating (9) on (¢
t’)  we have
x(t) =x(t )exp A (t—t) =myexp(dT) >m,.
Since x(t) =m, for t° >1” the same arguments can be continued. Hence x,(t) =m, for t=1,.
Let Q={m<y(t) x(t) <M} where m =min{m, m,} which shows that (3) is permanent. This com-

pletes the proof.
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