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The Stability Analysis of an SEIRS Model
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Abstract :In this paper, nonlinear incidence with a more general form is considered in an SEIRS epidemic model. The
model without time delay in the removed class is compared with the model with time delay in the removed class. The result
shows that the dynamic behaviors of the model with time delay are different from those of the model without delay. For the
model without time delay,the disease free equilibrium(DFE)is globally asymptotically stable when the basic reproduction
number is smaller than one. When the basic reproduction number is bigger than one,regardless of the time delay length
there exists a unique endemic equilibrium which is locally asymptotically stable under a condition. As for the model with
time delay,the stability of the DFE depends on the time delay besides the basic reproduction number. Furthermore, the
stability of the unique endemic equilibrium can be obtained under some conditions depending on the time delay. In
addition ,by numerical simulations,periodic solutions can be found from the endemic equilibrium when the time delay is in
some regions.
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In many epidemic models the total constant population is divided into four classes:susceptible S,exposed E,
infectious I,removed R. These models are called SEIRS since the susceptible become exposed ,then infectious ,then
removed and then susceptible again after the temporary immunity is lost. This SEIRS type models have been studied

many times in previous investigations''®'. For example,an SEIR model incorporating density dependence in the
death rate is studied in reference[ 11]. Then Grenhalgh studied Hopf bifurcations in a new SEIRS model with

density dependent contact rate and death rate''”’. Reference[ 13,14 ] investigated the global dynamics of the SEIR
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models with a nonlinear incidence rate and with saturating contact rate, respectively. Reference [ 15 ] studied the
global dynamics of the SEIR model with a bilinear incidence rate and vertical transmission. Recently, Reference
[ 16 ] considered the global dynamics of the SEIR model with a standard incidence rate.

In fact,the incidence of a disease is the number of new cases per unit time and plays an important role in the
study of mathematical epidemiology. The general form of incidence is written as BU(N) S I, where N is the
population size depending on environment ,S and [ are the numbers of susceptible and infective individual at time ¢,
respectively,B is the probability per unit time of transmitting the infection between two individuals taking part in a
contact. U( V) is usually called the contact rate ,and BU(N)is called adequate contact rate. In many literatures, the
adequate contact rate frequently takes two forms. One is linearly proportional to the total population size N or BN ,so
that the corresponding incidence is bilinear form BN S I,i. e. BSI. The other is a constant k,the corresponding
incidence k S I is called standard incidence rate. When the total population size N is not too large,since the number
of contacts made by an infectious per unit time should increase as the total population size NV increases,the linear
adequate contact rate BN would be suitable. But when the total population size is quite large,since the number of
contacts made by an infectious per unit time should be limited, or should grow less rapidly as the total population
size N increases,the linear adequate contact rate BNV is not suitable and the constant adequate contact rate k£ may be
more realistic. Hence ,the two adequate contact rates mentioned above are actually two extreme cases for the total
population size N being very small and very large ,respectively'®’. There also exists the incidence forming BI 7S’ in

17
some models!

! They formed the values of p and ¢ can influence the number of equilibrium and the dynamical be-
havior. In addition,a model with a general nonlinear incidence Bg()S is studied in reference[ 1]. It is found that
multiple equilibria exist for some parameter values and periodic solutions can arise by Hopf bifurcation from the
larger endemic equilibrium.

In real life, many infectious in nature transmit through both horizontal and vertical modes, such as herpes,
rubella , hepatitis B,and AIDS'"7*!_ Vertical transmission of diseases is the passing of an infection to offspring of
infected parents. This mode of transmission plays an important role in the spread of diseases. In recent years,the
studies of epidemic models incorporating vertical transmission have become one of the important areas in the mathe-

%21) and they have largely been inspired by the works of Busenberg and

matical theory of epidemiology'
Cooke '

There are many papers considering time delays in SEIRS models'"***) . In reference[25] ,two time delays are
introduced and studied in an SEIRS model, where the two delays represent the latent and immune periods,
respectively. They presented local stability analysis of equilibria and obtained sufficient conditions for global
stability of disease free equilibrium. By neglecting disease-related death rates in the SEIRS model in reference
[25],Wang"® shown the stability of equilibria and the uniformly persistence in the population. In reference[ 1 ]the
one time delay is the immune period of the removed class and they found that the time delay can lead to periodic
solutions. However , those delayed models don’t present the difference between the model without time delays and
the model with time delays. In this paper,we establish a new SEIRS epidemic model including a general incidence
forming Bh(S)I,vertical transmission and one time delay in the removed class. Furthermore ,we compare the model
without time delay with the model with time delay. Our goal is to determine the impact of time delay on dynamics of

the SEIRS model.

1 The Model

The mathematical model described here considers four classes:S(#) ,E(t),1(#),R(t)denoting, respectively,
the densities of the population that are susceptible, exposed (not yet infectious) , infectious and recovered with
temporary immunity. Obviously,

S()+E(t)+I(t)+R(t)=1.
In this article we consider vertical transmission. In addition , it is assumed that the nonlinear incidence is to be
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of the form Bh(S)I,where h(0)=0,h"(S)>0 for S e (0,1]. The classical bilinear incidence ( mass action)has h
(5)=S,and B is then the constant contact rate. The parameter >0 is the constant rate for loss of immunity,y>0 is
the constant rate for recovery,e>0 is the constant rate for the exposed population becoming infectious,1-p is the
fraction of offspring born of the infectious classes I and entered into the exposed class E,u>0 is the constant birth
(and death)rate and 7=0 is the immunity period of the recovered.

Then we have the model in the following:

dS

4 =HmS() =(1=p)ul () -ph(S(1) ) I+ne ™ R(1-7)

%:ﬁh(S(t) V=(etp) ECt) +(1=p)l (1)

d W
E=8E(t)_(/i+'}’)l(t) s

Byl (1) R (1) e R(1-0).

Using the standard method , it is easy to see that the disease free equilibrium E,=(1,0,0,0) always exists.
Denote S,=1.
Define the basic reproductive number
e((-p)u+Bh(sy))
0= . (2)
(e+u) (uty)

These quantities have a clear biological interpretation. Consider the case when an infectious is introduced into

a purely susceptible population with size S, =1. The number of susceptible that will become exposed per unit of

time is Bh(.S,)from contact with the infectious and(1—p)u from vertical transmission. £( (1-p)u+Bh(S,))is the

number of new infectious population. is the mean infective period of the disease. Thus, R, gives the

(e4u) (uty)
total number of offspring of the infectious during its life time in susceptible populations. The following section shows
that the basic reproductive number R, provides a threshold condition for parasite extinction.

Let(S(t),E(t),I(t),R(t))be any solution of (1) with non-negative initial conditions, we know that it
remains non-negative anytime. And because S(¢) +E (t)+1(t) +R(t)=1,we need only consider (1) within the
region (2, where

O={(S,E,I,R)1S=0,E=0,I=0,R=0,S+E+[+R<1}.

Lemma 1 There exist at most two equilibria in (2.

(1)If Ry<1,system(1)has a unique DFE E,.

(i) If Ry>1,system(1)has two equilibria,the DFE E, and the unique endemic equilibrium E=(S"* ,E* |I*,
R )regardless of the time delay length.

Proof From the second and third equations of Eq. (1) ,let their right hand equal to zero,we have

Bh(s)_(8+ )8( * )+(l—p),u:0 (3)
Denote the left hand side of Eq. (3)as F(S). It is easy to see that
+ " +
F(0)= (1-p)u-L2 )8( )=-PM—7—M_(%L)<O,

F(S,)= (5, +(1p)p- L) (o) Gty gy,

F(S)=8h"(S)>0.
If Ry>1,F(S,)>0 and then Eq. (3)has a unique root S* >0. Hence,if R,>1 system(1)has a unique endemic
equilibrium E=(S* ,E”* ,I" ,R" )regardless of the time delay length,where
— 23 —
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e A5 gty g =X .
M+1+4L € mtmne
e ut+ne™”

Next we discuss the stabilities of £, and E in system(1)with z=0.

2 Stability Analysis of Equilibria With 7=0

In this section,we will analyze the stability of the two equilibria of the model (1)with z=0.

Theorem 1 The disease free equilibrium E; of the system (1) with =0 is globally asymptotically stable if
R,<1.

Proof First we show the disease free equilibrium E, of the system (1) with =0 is locally asymptotically
stable if R,<1 and unstable if R,>1. Linearizing the system(1)with =0 around E,,we can obtain the characteristic
roots are A =—u,—(u+n)and roots of the following equation :

N +(e42u+y) A+ (e+) (u+y) e ((1-p)utBh(S,) )=0. (4)

Since

—(e+2u+y) <0,
(e4u) (uty) —e((1=p)u+Bh(Sy) ) = (e+u) (u+y) (1-R,) >0,
if and only if R,<1,the real parts of all eigenvalues of E, are negative. Thus,the disease free equilibrium E|, of the
system( 1) with =0 is locally asymptotically stable if R,<1 and unstable if R,>1.
Next we prove that the global stability of the disease free equilibrium E, if R <1.

Define a function
V(1)=E(1) +S21(1).
&

The derivative of V(¢)along solutions of Eq. (1)with 7=0 is

Vi(1)= B' (1) +E4 (1) = (e+u) (uty) 8((1—P)M+Bh(5))_1)](t)‘
e (etu) (uty)
From A'(S)>0 and 0<S<S,,we have h(S) <h(S,)and then

V(1) $(L+L)8(M1(t) (R,~1) <O0.

Since Ry;<1,V'(1)=0 holds only when /(z)= 0. It follows from Eq. (1) with =0 that E(z)—0,[(¢)—0,
R(t)—0 and S(¢)—1,and then E;=(1,0,0)is the largest invariant subset in the set where V'(¢)= 0. Hence,the
disease free equilibrium E;, of the system(1)with =0 is globally asymptotically stable if R,<1.

Now ,we turn to consider the stability analysis of the unique endemic equilibrium E.

(H) BH (S ) =-push(S°).

Theorem 2 If R,>1 and(H)is satisfied ,the endemic equilibrium E of the system(1)with =0 is locally as-
ymptotically stable.

Proof The characteristic equation of E is

M 4a, A +a, A +a A +a, =b 1 +b, A2 +b A +b, (5)
where

a, =e+4u+y+ph' (S* )1 >0,

a,=&(uABh' (ST ((1=-p)u+Bh(S™)) ) +(u+Bh'(S™ )™ ) Bu+y) +u( e+2ut+y) +(u+y) (e+u) ,

ay=2ue (uABh' (S )" ((1=p)u+Bh(S"))) +(utBh' (S )" ) (3u’ +2uy+ey) uu+y) (e4u)

ay =’ (uABh' (S™ )" ((1-p)pABh(S™))) +(uABh' (S™) ™) (W' 4y +uey)

b, =—n<0,

b, =—'r](,u,+Bhl(S N +e+2u+y) <0,

by ==n(e(uBh'(S" )" ((1-p)utBh(S™))) +(uty) (e4u)),

— 24 —
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by == (ue(uBh'(S" )" ((1-p)u+ph(S™)) ) +(u+Bh'(S" )" ) (' +uy) tuey) .

If(H)is satisfied, it is easy to see a,>0,a,;>0,a,>0,b,<0,b,<0. Thus,the left-hand side in Eq. (5)is positive
while the right-hand side is negative for all A =0. Then Eq. (5)does not have non-negative real solutions. Now we
consider whether Eq. (5)have imaginary solutions with non-negative real parts or not.

Suppose A =u+iv(u=0 and v#0)is a root of Eq. (5). Then we have

(u+iv)*+(a,=b,) (u+iv)’ +(ay=b,) (u+iv)*+(as=by ) (u+iv) +(a*-b*)=0. (6)

Denote A, =a,-b, ,A,=a,-b, ,A; =a;-b; and A, =a,-b,. Then we can obtain A,>0,4,>0,4,>0,4,>0 and
(u2—1)2)2—4u202+A1u(u2—31}2)+A2(u2—1)2)+A3u+A4=0, (7)
duv(u’ =" ) +A,0(3u’ 0" ) +2A,uv+A,v =0. (8)

Let u*—v* =m. From(8) ,we obtain
24,17 +2A,u+A,

duth, 9)

m=

Combining(7) with(9) ,we can get
64u° +96A, 1’ + (4847 +32A, ) ut + (84 +324, A, ) u’ +4Ru’ +2 QA u+P
— 3 =0 ,
(4u+A,)

(10)

where
P=AAA,-ATA, A5 ,Q=A,A,+A;-4A, , R=2 AA,+A A, +A5—4A,.

Denote ,Bh[( S*)I" =h and Bh(S" )=q,then the condition ,Bh[( S =—pu+Bh(S™ )is equivalent to h+pu=q.
For simplifying calculation,we substituting ¢ =h+pu—l(/=0)into P,(Q,R and we can obtain the following:

P=(eyh+e’ 1+2uel+yel+hel+8u’ +65u’ +8u’ y+8hu’ +8mu’ +Suey +3heu+6huy +6meu+6muy +2neh+6muh +

2pyh+2ney+e nren’ +2ub’ +2un’ +hn+n’ h+&’y+&’u+ey’ +2uy’ +y’ n+yn’ +y h+yh®) (2uel +nel +
8’ +Amu” +4u Y+ 2y 426’ +neut+2uey +ney+4hu’ +2nuh+ 2wy +yh+eyh ) >0,

Q=8husl+8yuel+6ue’ 1+166u’ 1+8nuel +2&° by +2elyh +£° I +3&° In+n” el +3elyy +3elnh + 14 suyh + 13 guhn +
21 guyn+Teyhn+28uyhn+56°w’ +32eu’ +&°y" +&'n” +48u’ y +48u° h+48u’ n+48u’* +6£° wy +&’ yh+58 un +
3 yn+32eu’ y+166u’ h+325u’ n+8ey’ u+3ey’ h+3ey’ nteh’y+Ten’ u+2en’ h+3en’y +40u’ yh+40u’ hn+
A0 yn+8uwy” h+8uy’ n+8uh’y+8uh’ n+8un’ h+8un’y+3vy hm+3yh’ n+3yn  h+ 1217y + 1207 K +12u° n” +
V2R +hi S0,

R =24huel+24yuel +22ue’ 1+48 g’ 1+ 24 nuel +6£° by +6 glyh +48° hl+2h° el + 2y el +2&° 1+ &’ P +7 &7 In+3n el +
Telyy+7elnh + T8 guyh + 77 guhm + 101 guyn + 27 eyhy + 108uyhn +4&’u +49&°u” +2&°y +2&°n +192u” +
587y +5&° 0" +240u’y + 2400’ h +240u’ 0 + 240" +368° wy + 146’ uh + 78 yh + 358 un + 6° hn + 1387 yn +
1685’ y+120gu’h +168gu’n +40ey’ u+ 11y’ h + 138y’ n + 16eh’u +Teh’y + 6h>n +39en’ w + 10en’h +
13en’y+192u’ yh +192u hy +192u” yy +42uy” h +42uy’ 0 +42uh>y + 42uh’ n +42un’ h+42un’y + 13y’ hn +
1Byh’ p+13yn b+ 720y + 720 + 120 1 +6y u+2y h+2y £+ 2y n+ 5y’ B> +5y° 0 +6h w+2h’ y+2h° n+
5h*n" +6m w+2n h+2n y+27" 0.

It is easy to see the left-hand side of Eq. (10)is negative for all u =0 under the condition h+pu = q.
Consequently , the lefi-hand of Eq. (10)does not equivalent to zero,which implies Eq. (5)does not have imaginary
solutions with non-negative real parts. Hence ,if R,>1 and( H)is satisfied ,the endemic equilibrium E of the system
(1)with 7=0 is locally asymptotically stable.

Note that when =0, (H)is equivalent to

B (5T (187 =(A2e1 L) (252

3 Stability Analysis of Equilibria With 7>0

In this section,we will turn to consider the stabilities of the two equilibria of the model (1) with z>0.

Theorem 3 If R <1 and w=ne™ ,the DFE E; of the system(1)with >0 is locally asymptotically stable.
— 25 —
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Proof Linearizing the system(1)with >0 around K, we can obtain the characteristic roots are A =—u and

roots of the following equation ;

X +a, A +ad+a; =e (b, A°+b, A +b,) | (11)
where
a, =e+3u+y>0,
ay =p(e+2uty) +(u+y) () —e ((1-p)u+Bh(Sy) )= u(e+2u+y) +(u+y) (e+u) (1-R,) ,
ay=p((u+y) (e4u) e ((L-p)utBh(S,) ) )=pulu+y) (e+u) (1-R,) ,
b, =-ne™ <0,

b,=—ne™ (e+2u+y)<0,

by =—ne " ((u+y) (e+u) —e((1-p)u+ph(Sy) ) )= —ne ™ (u+y) (e+u) (1-R,).

If Ry<1,it is easy to see a,>0,a;>0,b,<0,b,<0. Thus,the left-hand side in Eq. (11)is positive while the
right-hand side is negative for all A =0 and t>0. Then Eq. (11)does not have non-negative real solutions. Now we
consider whether Eq. (11)have purely imaginary solutions or not.

Suppose A =wi(w>0)is a root of Eq. (11). Then we have

@' i-a,0 +a,wita; = (=b,w +b,w’i+b;) (cos(wtr) —isin(w7) ). (12)
Separating the real and imaginary parts,we have the following system
-0’ +a,w=cos(w?) byw—sin(wt) (b;=b,w’) , (13)
—a,0 +a; =cos(wt) (by=b,w ) +sin(w?) b,w. (14)
To eliminate the trigonometric functions we square both sides of each equation above and we add the squared

equation( 13)and (14 )to obtain the following equation

(0" +a,0)* +(—a,0" +a;) > = (byw)*+(bs—b,w’)*, (15)
1. e.
o’ +(al-2a,-b)) ' +( a3 -2a,a,-b3+2b,by ) " +(as-b2 )= 0. (16)
Let z=w” ,we obtain
24,7 +eyz+ey =0, (17)

where

¢, =a"-2a,-b" = (e+u)* +(u+y) +2R, (e+w) (u+y) +(u’ —n’e ) ,

¢, =a" =2a,ay=by+2b, by = (- e ) [ (e+u) +(ut+y) 2R (e+m) (u+y) ] +(e+u) *(u+y)*(1-R,)*,

cy=a’=b’ = (e+u) (u+y) (1-Ry)*(u’ - ™).

If Ry<1 and u=ne™ ,¢,>0,c,>0 and ¢;>0,which implies Eq. (17)does not have positive solutions and then
Eq. (11)does not have purely imaginary solutions. Hence,If R <1 and u=mne™ ,the DFE E of the system(1)with
>0 is locally asymptotically stable.

Now ,we turn to the study of the stability of the endemic equilibrium of the model (1)with >0.

Lemma 2 For the function f(x)=x"+d,x’ +d,x" +dx+d, ,if d,>0,d,>0,d,>0,and d,>0,then f(x)=0 has
no positive real roots.

Proof Taking the derivative of f(x)with respect to x,we obtain

S(x)=4x" +3d, %" +2d,x+d,.

Notice that for x=0 the derivative f’(x) >0 and then the function f(x)is an increasing function of x =0. Since
f(0)=d,>0,f(x)=0 has no positive real roots.

Theorem 4 If R,>1,u=ne™ and(H)is satisfied, the endemic equilibrium E of the system(1)with >0 is
locally asymptotically stable.

Proof The characteristic equation of E is

A +a, A a A +as d+a, = (b, A +b, A  +b, A +b,) (18)

where
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a, =e+4u+y+ph' (S* )1 >0,

ay =& (uAPh' (S™ )" ((1-p)utBh(S™)) ) +(u+ph' (S )" ) Buty) +u(e+2u+y) +(u+y) (e4u) ,

ay=2ue (uABh' (S")I" ((1-p)u+Bh(S™))) +(utBh' (S )™ ) (3w’ +2uy+ey) Hu(u+y) (e4u)

ay =’ (uABh' (S™) 1™ ((1-p)pABh(S™))) +(uABh' (S™)I™) (W' 4y +uey)

b, =-ne™<0,

by =—ne (u+Bh'(S* )" +e+2u+y) <0,

by =—me ™ (e (Bl (S )" ((1=p)uBh(S))) +(uby) ()

by=-ne ™ (ue(utBh' (S )™ ((1=p)pu+Bh(S™)) ) +(u+Bh'(S™ )™ ) (u’+uy) +uey) .

If(H) is satisfied, it is easy to see a,>0,a;>0,a,>0,b,<0,b,<0. Thus, the lefi-hand side in Eq. (18)is
positive while the right-hand side is negative for all A =0. Then Eq. (18)does not have non-negative real solutions.
Now we consider whether Eq. (18)have purely imaginary solutions or not.

Suppose A =wi(w>0)is a root of Eq. (18). Then we have

o' 0,0 10,0 +a,wita, = (=b,w’ i-b,w” +b,wi+b, ) (cos(wt) —isin(w7) ). (19)

Thus ,w must satisfy the following system

o' —a,0 +a, =cos(wt) (b,~b,w” ) +sin(w7) (byw-b,w’ ), (20)
—a,0" +a,w=cos( w7t) (byw—b,w; ) —sin(w7) (b,~b,w’). (21)
From(20)and(21) ,we can get
(0'-a,0" +a,) +( 0,0’ +a,0) " = (b,~b,w’ ) +(byw-b,w’ ), (22)
i.e.
o' +¢,0° +e,0" +e,0 +¢, =0, (23)
where

¢, =a}-2a,-b?,
¢, =ar+2a,-2a,a,-b5+2b by,
¢ =as—2a,a,+2b,b, b3,
c,=a;-b;.
Let z=@" again,we obtain
24,2 46,7 +eyz4e, =0, (24)
By complex calculations,we can get ¢,>0,¢,>0,¢;>0 and ¢,>0 if w=ne™ and(H)is satisfied. According to
Lemma 2 ,Eq. (24 ) does not have positive roots and then Eq. (18) cannot have purely imaginary solutions. Hence , if
Ry>1,u=me™ and(H)is satisfied,the endemic equilibrium E of the system(1)with >0 is locally asymptotically
stable.
Notice that when >0 ,u=ne™" and(H)is equivalent to
Lln M < T$Lln ne’Bh'(S* )2( 1-S%) —(,u,+2y+g) (/;L2+,L,L’y+(¢,;’y)77'
moop o (uty) (W Hpy+ey) -ue ph'(S7) (1-57)

Here ,to make sense of the inequality above ,following conditions are satisfied ;

Mm<n,
and

() (pve) +,LZ€(2 +8)(M2+W+ey)>ﬁh’(5* )(I—S*)B(’“ﬂ/)(Mfﬂ);’u(uww)(,U«2+,uy+8y).

Remark 1 If u=n,the condition w=ne™" is satisfied for all nonnegative 7. However,sometimes u is smaller

than 7 in realistic situation. In order to satisfy the condition u =mne™",the delay 7 must be controlled in some

regions. In fact u=ne™" is equivalent to Z‘BLIH SN 7. If 0<T<iln 7L there may be other phenomena in this
TR w

system. We take some numerical simulations and get oscillations with some parameters in the following simulations.
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Fig.1 The trajectories of S,E,I,R in system(1)with 7=0 and R, =2.395
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Fig.2 The trajectories of S,E,I,R in system(1)with 7=1 and R, =2.395

4 Conclusions

In this paper,we consider an SEIRS epidemic model with vertical transmission,nonlinear incidence which has
a more general form,and with a time delay in the removed class. Through mathematical analysis we can get that the
dynamic behaviors of the model with time delay are different from those of the model without time delay. For the
model without time delay,the disease free equilibrium is globally asymptotically stable when the basic reproduction
number is smaller than one. When the basic reproduction number is bigger than one,there exists a unique endemic
equilibrium which is locally asymptotically stable under a condition. For the model with time delay,the stability of
the DFE depends on the time delay besides the basic reproduction number. In addition,regardless of the time delay
length there exists a unique endemic equilibrium which is locally asymptotically stable under some conditions. From
the mathematical analysis, it is easy to see the time delay can influence the dynamic behaviors of the SEIRS
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epidemic system. From(2)we know that R, is independent of the time delay. However,the stability of equilibria in
the model (1) may depend on the time delay. It is obvious that the time delay can influence the stability of DFE and

the endemic equilibrium according to Theorem 3 with Theorem 4.

To support this point,we perform some numerical simulations. We choose h(S)= and parameter values

S
1+aS
in the following:

a=0.1;8=0.9;£=0.6;p=0.3;y=0.1;9=0.4;u=0.2.

Then R,=2.395, 1, :iln M =3.47 and the condition( H) is satisfied in the two models. In Fig. 1, ,we let z=0 and
[V

we can see that the endemic equilibrium is stable ,which supports the result of Theorem 2. However,in Fig. 2 ,we let
7=1<7, and we can see oscillations can occur during 0<7<3.47. This implies that the time delay can influence the

dynamic behaviors of the SEIRS system(1).
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