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Abstract : For a positive arithmetic progression U= {u+d,u+2d, -, u+nd} ,(u,d)=1,we study the logarithm of the
least common multiple of subsets of the set U. We show that for any 0<6<1 ,loglem{a:a e A} = (1-0)n’logn+o(n’) for
almost all sets ACU of size [n’].
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[(WE] BRAMENIIETIR TERBE U W TENR/DNAREE EH T XHMEER 0<6<1 X ILFIT A KE R
[n’ 10 U KT5E A BE loglem{a:a e A} =(1-0)n’logn+o(n’).
[RBIR] B/ ARG

For any set of positive integers A,let us denote
Y(A)=loglem|a:acA}.
Let
U={u+d,u+2d, - ,u+nd}
be an arithmetic progression,where u and d are positive integers with (u,d)= 1. We also denote that

dx“(n,m:(ij 3w

for s=1,2,which is the mean value of " in the set of all subsets A C U of size k. Recently Cilleruelo, Rué,Sarka
and Zumalacarregui''’ proved that
Y (A)=nlog2+o(n)
for almost every set AC {1,---,n}. They also studied the typical behavior of the logarithm of the least common
multiple of sets of integers in{1,---,n} with prescribed size. For example,they proved that for any 0<6<1,
Y(A)= (1-0)n’logn+o(n’)

for almost all sets AC {1,-++,n} of size [n’]. For more results one may refer to [2-4].

In this paper we generalize the results in [ 1]. Specifically, we study the logarithm of the least common
multiple of subsets of the positive arithmetic progression U and obtain the following results :

Theorem 1 Let ¢>0,0<0<1 and k=cn’+0(1). We have
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y(n,k)=c(1-0)n"logn+0(n’)
for 0<f<1 ,when n— oo . Furthermore ,for any £>0 we have that

| {A:AeU, 1Al =k, 1 (A) - (n,k) I <ep(n k) ||

n

k

1.

Theorem 1 implies that for 0<6<1
W(A) ~c(1-0)n’logn
for almost every set AC U of size [en’].

We shall apply the probabilistic approach to derive the main results. For a given 6 with 0<6<1,we select the
elements of A such that all its events {a € A} are independent and P(a € A) =4 for every a € U. Accordingly we
denote this probability space by S(n;6) which is the set of subsets of U with the probability measure given by P
(X)=8""(1-8)""" for any XCU.

Throughout this paper, we use the Vinogradov symbols >, < and the Landau sym-bols O, o with their
regular meanings. We also use [ | for the integer part function and | | for the cardinality of one set.

Let us begin the proof of our main results. To prove Theorem 1 we need to prove the following two theorems
firstly.

Theorem 2 Let ¢>0 and 0<6<1. In the probability space S(n;cn’") ,the expected value of (A) with A
C U satisfies

E((A))=c(1-0)n’logn+0(n’)
for 0<f<1,when n— .
Theorem 3 In S(n;8) the variance of y(A) satisfies V(i (A) ) <Snlog’n.

1 Proof of Theorem 2

The following lemma is due to Cilleruelo, Rué,Sarka and Zumalacarregui[l].

Lemma 1 [1,Lemma 2.1]For any set of positive integers A we have
p()= 2 A(m),(m),

where A denotes the classical von Mangoldt function and
1, ifAN{m,2m,3m,---} #J,
1,(m)= .
otherwise.

0,

Proof of Theorem 2 By Lemma 1,we have

E(p(A))= 3 A(m)E((m)).

Ism<u+nd

We define that

Ffm)=1UN{m,2m, -} . (1)
It is obvious that f(m)=[n/m] or f(m)=[n/m]+1. On the other hand,we observe
ECL(m))=P(AN Im 2m | #@)= 1= []  Plmea)=| Hdm> )
s e = LTI ER S L C(sey e i (dym)= 1.
Thus
E(p(A)= D AmEL(m))< Y A(m)(1-(1-8)""") <
1 i l/tzlf)u =+ /lbd 1 i l/tz’f)u =+ /lzd
Yo A(m) (1-(1=8)"""y< Y A(m) (1-(1-8)""""Y48 Y. A(m) <
I1sm<u+nd Isms<n n<m<u+nd
Y, A(m) (1=(1-8) """ ) +8(p (u+nd) =h(n) ). (3)

Ism<n

We split the left sum in (3) into intervals J = L,i since [ n/m] =r whenever M cm<"". Then
o+l r r+1 r
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we have

1<2< A(m) (1-(1-8) "y = ; (1-(1-8)"") ZIA(’”): ; (1—(1—5)’“)({/t(n/r)—lp(%)):

55 (1-8)(n/r)+8p(n)=n ¥ U170V 5) won 3 e(nsryd=0) 5) w8y (n)=
5n10g5 +0n Z a(n/r)( 5) +5(n), (4)
where ¢(x)= 4 xx) —1,denotes the error term in the Prime Number Theory.

From (3) and (4) we get
E - (1-8)" o 1 (1-8)" 5)

(¢ (A)) <énlogd' +én Y, &(n/r) 48y (uand) <Bnlogd (1+1 = Y, e(n/r)

r=1 0g r=1

L wnd ) )y <208 LS D)1 u+nd(1+8(u+nd))). (5)

logé™ 1-6 ! r 1 g6

Next we will estimate the lower bound of E(¢(A) ) . With a similar discussion,we can obtain that

E(p(A))= Y A(m)E(m))= Y A(m)(1-(1-8)""")=

Ism<u+nd lsm=n
(d,m) =1
2 Am)(1-(1-5)"") 3 u(0)= X p(1) X Alm)(1-(1-8)"""") =
I1sm<n thd thd I<m<n
thm thm
-0)’
S A(m)(1-(1-8)"""H) = > Y 1ogp>510g‘z 12 «9(n/r | —w(d)logn=
1sm<n pld 1<pe<n 1_ l 8 r=1
510g5 (1-6)" 1 1-6
P e b S e R (o), (6)

where w(d) denotes the number of distinct prime factors of d.

By taking into account the error term in the Prime Number Theorem we can deduce that

1
logs™ =

for some C,>0. For more details of the proof of (7) ,one may refer to [ 1]. Thus we combine the above estimates

(5),(6) and (7) to derive

o(n/r) U2 sty (7)

510g5 !

E(y(A))=—""n(1+0(1/logn)).

Since 8=cn"",then we have
logd™
1-6
for 0<f<1 ,which completes the proof of Theorem 2.

2 Proof of Theorem 3

=((1-0)logn-loge) (1+0(n""))

Applying the similar methods of the proof of Proposition 3.1 in [1],we can deduce the following lemma
which is omitted the proof in this section to avoid repeats.
Lemma 2 For s=1,2,we have
¥ (n,k)= E(p'(A))+0(klog™ " n)
where E((A)) is the expectation of (A) in S(n;k/n).
Proof of Theorem 3 By the linearity of expectation we have that

V(g (A4))=E(§*(A))-(E(p(A)))* = Y Alm)AW) (EUL(m) (1)~

1<m,l<u+nd

(d,m) =1,(d,l) =1

ECL(m)EU(D)< Y, A(m)AW) (EUL,(m)1,(1)=E(I,(m))E(1,(1))).

1<sm,l<u+nd
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Note that if A(m)A(l)#0,then [Im,m!l or (m,l)=1. Next we will calculate E(1,(m)I,(l)) in these
cases.
If IIm then
E(L(m)I,(1))=1-(1-8)"".
If (m,l)=1 then
E(IA(m)IA(l) ): 1_(1_5)/("1) _( 1_3)/’(0 _I_(1_5)/'(m)+f(l)f/(ml>.
We observe that both of the above two relations are subsumed in
E(]A(m)]A(l) ): 1_(1_5)/'(m) _(1_6)/(1) +(1_5)f(m)+f(l)ff([m,/]>'
On the other hand by(1)we have
E(L,(m))E(1,(1))= (1-(1-8)""") (1-(1-8)"").
Without loss of generality we may assume that [<<m and use the inequality 1-(1-x)"<rx to obtain
A(m)AL) (ECL(m)1,(1))=E(1,(m) ) E(1,(1)))=A(m) A(L) (1=(1-8)"1™1) (1-§) 0D <

A(m) A

A(m)A(D)S([m,l])<én(m,l) /

Thus , we have

vp(A))<sn Y (m 1)/‘(’”) A<l><<5 Yy logplogppjs( ¥ Zlogpj<<

Isism<u+nd I <p<u+ndl Sj<sk I <p<su+nd k=1

D B T e I Pl B

[
1 <p<u+nd k=1 1<p<u+nd k=1 1 <p<u+nd P k=1 2 1 <p<u+nd P k=1
2
onlog”(u+nd) (8)
which completes the proof of Theorem 3.

3 Proof of Theorem 1

Now we will use Theorem 2, Theorem 3 and Lemma 2 to prove Theorem 1.

For k ~cn’ and §=cn”" we have
O] E B0 R ) = )+ DB )

(E(p(A)) =y (n,k)) (E(p(A))+p(n k) Y <n’log’n+n*"?log”*n+(n"?log**n) (n’logn) <

" 1og" .
Thus from Chebyshev’s inequality we get that
[{A:AeU,IAl =k, 1 (A) = (n, k) 1 =eh(n k) L1 _ n*log”’n _ n’"log”’n _log"’n 0
(nj (sp(n,k))> (en’logn)® &n®? ’
k

which completes the proof of Theorem 1.
Remark The proofs of our theorems can be modified to deduce the similar results for any positive se-

quences.
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