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A New Preconditioned AOR Iterative Method for
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Abstract : The purpose of this paper is to investigate the preconditioned AOR method with a new preconditioner denoted
as I+S_+S,,+S; for M-matrix. The new preconditioner is constructed by considering the largest absolute value of the
upper triangular part,the secondary diagonal and the last column of the coefficient matrix A. We prove that the rate of the
AOR iterative method can be accelerated ,and give the comparison with other three preconditioners to show the new pre-
conditioner is more effective. Numerical example demonstrates the effectiveness of this preconditioning scheme.
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Many preconditioned iterative methods were proposed to improve the efficiency and robustness of basic
iterative methods,all of which transformed the original nonsingular linear system
Ax=b (1)
into the preconditioned form
PAx=Pb,
where A=(a;) € C"™ ,b € R" are given,the preconditioner P € R™" is chosen as a nonsingular and nonnegative
matrix with unit diagonal entries,and x € C" is unknown. For ease of presentation,we assume that A possesses
unit diagonal entries and is split as A =I-L-U, where I,L and U are respectively diagonal, strictly lower and
strictly upper triangular parts of A. The standard Accelerated Overrelaxation( AOR ) iterative method''! for solving
(1) is denoted as
=L x'+(I-yL)"'wb, k=0,1,2,-- (2)
with the iteration matrix
L,,=(I-yL)"'[ (1-w)I+(w-y) L+oU]. (3)

As is known to all that for certain values of w (relaxation parameter) and 7y (acceleration parameter) in
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(2) ,we can get some well-known basic iterative methods. For instance , we obtain the Jacobi iterative method if @
=1,y=0,the JOR iterative method if y=0,the Gauss-Seidel ( GS) iterative method if =7y =1 and the Successive
Overrelaxation ( SOR) "' iterative method if w=".

The selection strategies of preconditioners of the preconditioned iterative methods were discussed in the past
and recent years. We list some of them which will be mentioned in this paper. In 1991, Gunawardena et al. "’
suggested the modified Gauss-Seidel method with the preconditioner I+ S, Kohno et al.'*’ then gave the
generalized preconditioner I+S, in 1997 ,with their preconditioner Wu et al. "°! presented the preconditioned AOR
iterative method and corresponding convergence results in 2007. Another advantageous idea came from

Kotakemori et al. '’

in 2002, they got the comparison theorem for the modified Gauss-Seidel method by proposing
the preconditioner I+S, where S, is constructed by only the largest element at each row of the upper triangular
part of A ,in 2004 Morimoto et al. '” considered the preconditioner I+S+S  to ameliorate the results in [6] and
in 2009 Zheng et al. suggested two new preconditioners observing on the last row to deal with the drawback in [6].

In this work ,motivated by the above tactics but different from them,we construct a new preconditioner by
considering the largest absolute value of the upper triangular part(not just the largest element at each row of the

upper triangular part of A in [6]) ,the secondary diagonal and the last column of the coefficient matrix A , which

is denoted as ;’:I+SQ+SM+S5. We prove that the rate of the AOR iterative method can be accelerated ,and give
the comparisons with other three preconditioners given before to show our preconditioner is more effective.

For convenience, we introduce some notations, some known concepts and results below. Throughout this
paper ,we use symbol p(A) to denote the spectral radius of A ,we write A=0,4>0,A>0 if all elements of A are
nonnegative , nonnegative but at least a positive element and positive, respectively. We can also identify the
n-dimensional vector with nx1 matrix in order to define x =0 ,x>0,x>0 individually.

Definition 1 Let A=(a;) € R”. Then A is called

(1)a nonnegative matrix if a;=0;

(2)an Z-matrix if a; <0 for all i7/;

(3)an L-matrix if A is an Z-matrix and a,;>0;

(4)a nonsingular M-matrix if A is a nonsingular L-matrix and A~ =0.

Definition 2 Let M,N € R™". Then A=M-N is called

(1) a regular splitting if M™' =0 and N=0;

(2)an M-splitting if M is a nonsingular M-matrix and N=0;

(3)a convergent splitting if M is nonsingular and p(M'N)<I.

Lemma 1) Let A € R™ be an Z-matrix. Then next three statements are equivalent

(1)A is a nonsingular M-matrix ;

(2)There is a vector x>0 such that Ax>0;

(3) Any regular splitting is convergent.

Lemma 2 Let A € R™ be a nonnegative matrix. Then

(1) ™) If ax <Ax for some x>0 ,then a<p(A);

(2)" p(A) is the eigenvalue of A and there exists an eigenvector x>0 corresponds to p(A).
1 AOR Iterative Method with the Preconditioner I+S_+S,+S;

Let us consider the preconditioned linear system
U U
PAx=Pb,
where A=(a;) € R"™" is nonsingular with unit diagonal entries,b € R",
U
P=(p;)=1+S,+S,+S;
with
8 —
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~aa 1<isn-1,j=i+l,0<a,<I,

Sa:(‘gi.):{ 1+l
! 0, otherwise ,
J a ’ jzji ’
SM = (Si,') = { .
0, otherwise,

where j,=minl,,I;={j*la;| is maximal for i+2<j<n{,1<i<n-1,a are defined as

M, if qa,,a,,;,-a; =M,
a= )
-a; , otherwise,
with
) . R b, j=nandj #n,
M=max{ la,|,i#n,j>i}, S;=(s, )=
y y .
0, otherwise,
where
M, if a,a,,, Ajyyy,—a4;, —Ay, =M,
b= ]
-a, , otherwise.

u U u

U U U U U U U
We split A=(a;)=PA as A=D-L-U,where D,L,U are respectively diagonal, strictly lower and strictly

upper triangular matrices. Then the preconditioned AOR iterative method is expressed as

k+l _ b J v v ~
=, A +o(D-yL)"Pb, k=0,1,2,-,
where
N 2 Y u u
J,,=(D-yL)" [(1-0)D+(w—y)L+o U]. (4)

U
By computing, a; then can be expressed as

n
1+ D ppa, 1<i=j<n,

k#*i

py+ Xopaay, 1 <i#j<n

k#j

For simplicity ,we give the unified denotation P” =(p, ) as the preconditioned matrix for I+8% 1+8 .14,
I1+S,'*) and I+8+S, " Here
S.=(p=] T
0, otherwise ,
where k,=minU,,U, = |{j: la;| is maximal for i+1 <j<n|,1<i<n-1.Since S, becomes S if ¢;=1,i=1,2,---,
n,we only need to consider S, when S appears.
Similarly,,we split A" =(a; )=P A as A" =D"-L" -U" ,where D" ,L" ,U" are respectively diagonal,
strictly lower and strictly upper triangular matrices , then the preconditioned AOR iterative method is
=] x'+o(D"—yL" ) 'P*b, k=0,1,2,-,
with the iteration matrix
J, ,=(D"—yL" ) ' [(1-0)D* +(w—y)L" +0U" ].
We first show a fundamental lemma utilized in this paper.

Lemma 3'"°' TetAeR™ bea nonsingular M-matrix. If P = (ﬁy) € R"™ is a nonsingular nonnegative pre-

conditioner matrix such that ]A),;i =1,i=1,2,:-,n,and }A)L-j + z ]A)ijakj <0,1<i%#j<n,then the following
k= Lk

statements are true:

(1)PA is also a nonsingular M-matrix.

) U )
() Ifp(L,,)<1,then p(L,,,)<p(L,,)<l,where L, is the preconditioned AOR iteration matrix and

— 0 —

1%}
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L, , is defined in (3).
Remark 1 Noting Definition 1,we can give the equivalent expression of the first part of this lemma:for a

nonsingular M-matrix A ,PA is also a nonsingular M-matrix if PA is an Z-matrix.
Theorem 1 If A € R"™ is a nonsingular M-matrix, then ;’A =(I+S,+S,,+S;)A is a nonsingular M-matrix.
Proof By the result of Lemma 3 ,we only need to prove that ;'A is an Z-matrix,i. e. ,to prove that all the
off-diagonal entries of ;’A written as (szij( i) are nonpositive.

u
If p,;=0,o0bviously a;= Z P, <O.If p, 70, then there are four possibilities :
=
(1)when j=i+1,
u
Qi =P TPii i P2 Qi i T FP 3 Qi) = = Qs e FP 0 Qg DA =
(1-a;)ay,, FPii2Qiir i1 T P A <0.
(2)when j,<n and j#n,
U
Qy=a+p ;a5 4P Qi t TPy 1 QG TPyt Qg T TP Gy, = AT — Ay, @

1

i tha,; <O.
(3)when j,<n and j=n,
u
Qi =Pin P @it Piis1 Q10 TPy, By = b"'aml —0,a,,,0,,,,taa;, <0.
(4)when j,=n and j=n,
U

= = _ <
Qi =PinFPii @iy P i1 Qi1 =AF Ay, —0GA G <0.

The last inequalities of (2),(3) and (4) hold because of the selection of a.

Thus,we have the statement of Theorem 1.

i+ln

Remark 2 Tt can be verified similarly that P* A is a nonsingular M-matrix if A is a nonsingular M-matrix.

Theorem 2 If A is an Z-matrix and with p(L, ,) <l and 0Sy<w<1,07#0,then the new preconditioned
AOR method satisfies p(J, ) <p(L, ,)<1,where L, and J , are defined in (3) and (4).

Proof The result follows directly from Theorem 1 and Lemma 3.

Remark 3 The result and proof can apply to p(J, ) since P*A is an M-matrix by Remark 2.
V] V] U V]
Let A=PA=M-N,A" =P"A=M"-N" ,where
U l Y Y * 1 * #
M="(D-yL) M =—(M"-yL"),
® 1)
and
| = vy « 1 . « .
N:;[ (1-w)D+(w-y)L+o U] ,N’ :;[ (1-w)D" +(w-y)L" +0U " ].
Then we obtain the following results.
Theorem 3 If A € R"™ is a nonsingular M-matrix and 0<y<w<1,w##0,then
V] V] V]
(1)A=M-N is an M-splitting;

V]
2)(M)"'=(M")"".
Proof Let E, ,E,,E, be diagonal matrices of S _L,S,L,S;L and F,,F,,F, be strictly lower triangular
matrices of S,L,S, L,S;L respectively. Then

U U @) U
PA=D-L-U=(I-E,-E,-E,)-(L+F,+F,+F,)-(U-S,,-S,-S;+S,U+S,U+S,U) ,
U
(M) =w[I+y(I-E,-E,-E,) '(L+F,+F,+F,) +y’(I-E,-E,-E,) >+ +(L+F +F,+F,) "+
y"'(I-E,-E,-E,)""(L+F,+F,+F,)"" | (I-E,-E,-E;) ' =0.

U U V] V] V]
Obviously ,M is an L-matrix and N=0. Hence A =M-N is an M-splitting.
Next we discuss the case when P*"A=D"-L" -U" from the three different expressions of P".
— 10 —
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(a)If we take
P"A=(I+S,) (I-L-U)= (I-E,)-(L+F,)-(U-S_+S,U),
(M*) " =0[ (I-E,) ~y(L+F,) ] " =w[I-y(I-E,) "(L+F ) ] "(I-E,) ",
it follows that
(Aul) ‘zo[I+y(I-E,) ' (L+F ) +y(I-E,) >(L+F,)’+-+y""(I-E,) ""(L+F )" J(I-E,) ' =(M" )"
(b)If we take P* =1+S, and denote S,L=E, +F, are respectively diagonal matrix and strictly lower
triangular matrix , then
P A=(I+S,)(I-L-U)=(I-E,)-(L+F, )-(U-S,+S,U),
here
(M) =0 (I-E} ) ~y(L+F; ) ] ' =o[I-y(I-E; ) " (L+F, ) ] "(I-E, )",
since E, <E, ,F, <F, it holds that
(M) 20 Loy (I-ES ) (L4F ) +y(I-E5 ) *(L4F ) 4ty (I-ES ) " (L+F )™ T (1-E ) = (M),
(¢)If we take P =I+S_+S,,
P"A=(I+S,+S,)(I-L-U)= (I-E,-E, )-(L+F,+F, )-(U-S,-S,+S,U+S, U),

we obtain that

then

U
(M) "' zw[I+y(I-E,-E, ) "(L+F,+F, ) +y(I-E,-E; ) >(L+F ,+F, )’ +---+
7"_1(1_E1_E2* )I_H(L"'Fl +L2* )n_l ] (I_El_Ez* )_I = (Mk >_1 .
From (a),(b),(c),the second part of this theorem follows.
Remark 4 (1)If we take a; =1 for all 7,then the theorem is also true for the preconditioners I+S and

I+S+S  presented in [3] and [7].

U U U V] U U V]
(2)A=M-N is an M-splitting implies that (M) 'N=0. Thus,by Lemma 2, p( (M) 'N) is the eigenvalue

U ) U U
of (M)™'N and there exists an eigenvector x>0 according to p( (M) 'N).

U V] V] V] V] V]
(3)1It is easy to see that A=M-N is a regular splitting, then by Lemma 1,A =M-N is a convergent split-

ting.

In the following theorem we supply the comparison theorem to show that our preconditioner is superior in in-
creasing the convergence rate of AOR iterative method.

U
Theorem 4 Let A € R be a nonsingular M-matrix and p(L, ,) <1, suppose that Ax=A"x where x is
V] V]
the nonnegative eigenvector corresponding to p( (M) 'N). Then p( J,.)<p(J,, )<l
V] U V]
Proof Since p(L, ) <1,both A=M-N and A" =M~ -N" are convergent splittings from Theorem 1.
V] U
Thus ,we only need to confirm that p(J, ) <p(J, ). Since (M) '=(M" )" and Ax=A"x,we obtain
U V] V] V]
(M) "'Ax-(M")'"A"x=(M")"'N"x-(M) 'Nx=0,
U U V] | V] V] U

from (M) 'Nx=p( (M) 'N)x,the above inequality becomes p( (M) 'N)x<(M" ) 'N"x. By Lemma 2, we
have p(J,,) <p (7).

Remark 5  Under the assumption in Theorem 4, the spectral radius of the iteration matrix of our
preconditioned AOR iterative method is smaller than those methods with the preconditioners in [3,4,6,7].

Remark 6 Throughout this section, similar results about Jacobi, Gauss-Seidel, JOR and SOR methods can

be obtained by choosing special parameters of w and 7.
2 Numerical Example

Example 1 Give the two-dimensional convection-diffusion equation
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du . ou

—Au+£+2 P f
in the unit square {2 with Dirichlet boundary conditions, if we apply the central difference scheme on a uniform
grid with NxN interior nodes (N° =n) to the discretization of the above equation,we obtain a system of linear
equation (1) with the coefficient matrix

A=IQP+Q®I,
where P =tridiag( —28ih 1, —28;}1) and Q=tridiag( —14ih ,0, —18;}1) are VxN tridiagonal matrices,and h= % is
the step size.

Obviously ,A is a sparse M-matrix. In our experiment,we choose zero vector as the initial iterative vector x”,

and the right-hand-side vector is taken so that e=[1,1,---,1]" is the solution of the considered system. The
iterations are terminated when the norm of x'—e is less than 107, In Table 1, we show briefly the basic iterative

AOR method,the CPU time,the iteration number and the spectral radius with AOR,CPU,IT and p respectively.
We take o;=0.9 for all i,let P AORI,P " AORII represent the preconditioners I+S, and I+S,, respectively,and

U
P AOR represent our new preconditioner I+S +S,,+S;. In Table 2,P* GMRESI and P* GMRESII indicate pre-

conditioned GMRES method with the preconditioners I+S, and I+S,, ,while IU’ GMRES means the preconditioned
GMRES method with the new preconditioner I+S_+S,,+S;. Our test was implemented on a PC using MATLAB
programming package.

Table 1 IT and CPU for AOR and preconditioned AOR for Example 1

AOR P* AORT P* AORTI PAOR

¢ Tt T IT p CPU IT p CPU IT p CPU T p
1 1 16* 0.0320 47 0.7024 0.0320 29 0.5602 0.0310 27 0.5386 0.0310 23 0.4704
GS METHOD 24> 0.1100 52 0.7164 0.2190 31 0.5783 0.2030 29  0.5575 0.2020 25 0.4904
40* 1.5760 56 0.7240  3.76 33 0.5883 3.7130 31 0.5680 3.6350 27 0.5014
50° 5.3350 57 0.7256 13.7750 34 0.5905 13.7590 32 0.5702 13.4940 27 0.5038
1 0 16 0.0320 95 0.8381 0.0320 72 0.7892 0.0930 70 0.7831 0.0780 62 0.7504
JACOBI METHOD 242 0.1400 106 0.8464 0.2180 82 0.7798 0.6560 79 0.7941 0.5770 70 0.7627
402 1.8250 115 0.8509 4.0090 89 0.8055 10.3740 85 0.8 10.1870 76 0.769 4
502 5.9750 117 0.8518 14.3200 90 0.8067 14.1960 88 0.8013 14.1020 78 0.7708
0.75 0.75 16* 0.0630 81 0.8188 0.0620 55 0.7483 0.0620 54 0.7387 0.0470 47 0.700 4
SOR METHOD 242 0.3900 89 0.8274 0.4530 60 0.7593 0.7502 59 0.7502 0.4210 51 0.7128
402 5.8190 95 0.8322 7.6900 64 0.7654 7.6750 62 0.7564 7.6280 54 0.7196
502 20.1860 97 0.8332 28.0640 66 0.7667 28.0330 63 0.7578 27.9700 55 0.7211
0.5 0.5 162 0.0800 144 0.8968 0.0900 105 0.8610 0.0800 102 0.8563 0.0800 90 0.8350
SOR METHOD 242 0.6200 159 0.9019 0.6900 115 0.8674 0.7000 111 0.8630 0.6400 99 0.8424
402 8.9400 171 0.9047 10.7600 123 0.8710 10.68 119 0.8667 10.5700 106 0.846 4
50> 33.5550 174 0.9052 41.6810 126 0.8717 39.2650 121 0.8674 38.4860 108 0.8473

U
From Table 1, we can see that P AOR is superior to P* AORI and P* AORII in computing time and
V]
iterative number, the spectral radius of P AOR is smaller than AOR,P" AORI and P* AORII,the computing time

of AOR is less than IU’ AOR whereas the iterative number of IU’ AOR is less than AOR. Table 2 shows that IU’
GMRES is superior to GMRES,P* GMRESI and P* GMRESII both in CPU time and iteration number.

In addition, we show the spectrum picture of matrix A in Fig. 1 ,the spectrum pictures of the preconditioned
matrices I+S_,I+S, and I+S_+S,+S; in Fig.2-4. In the preconditioned cases of Fig. 2-4,we take N=50 and
a;=0.9 for all i. It is easy to see the eigenvalues of the original matrix A in Fig. 1 is scattered between 0.1 to
1. 9,the spectral distribution of our new preconditioned matrix in Fig. 4 is more clustered than those of the two

others in Fig.2-3. Clearly,the preconditioner proposed in this paper is more effective.
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Table 2 IT and CPU for GMRES and preconditioned GMRES for Example 1

n=16x16 n=24x24 n=40x40 n=50x50
Method
CPU IT CPU IT CPU IT CPU IT
GMRES 0.062 0 84 0.39 92 2.683 0 96 6.584 0 97
P* GMRESI 0.062 0 57 0.2650 62 1.8410 65 4.3990 65
P* GMRESIL 0.047 0 56 0.2650 61 1.779 0 63 4.396 0 64
PCMRES 0.046 0 49 0.218 0 53 1.560 0 55 3.8220 56
0.8 0.4
0.6 03
0.4 0.2
0.2 0.1
or or
-02r -0.1-
-0.4 - -02r
06 -03F
-0.8 | | | | —0.4 | | | | | | |
0 0.4 0.8 1.2 1.6 2.0 0 02 04 06 08 10 12 14 1.6
Fig.1 Spectra of the matrix A Fig.2 Spectra of the matrix P* AORI
0.5 0.6
0.4r 0.5
03+ 04r
02f ool
0.1 o1k
or ofF
~0.1F -0.11
-02F -021
03} -0.31
L —04[
-0.4 _osf
_05 1 1 1 1 1 1 1 1 1 | 1 | 1
0 02 04 06 08 1.0 12 14 16 060702 04 06 08 10 12 14
Fig.3 Spectra of the matrix P* AORII Fig.4 Spectra of the new preconditioned matrix
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