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Abstract: Recently, backward stochastic differential equations driven by fractional Brownian motion play an important
role in mathematical finance, partial differential equations and other fields. In our paper, by the localization method and
the generalized Ito formula, we consider the L'(p=2) solutions of backward stochastic differential equations driven by
fractional Brownian motions under reasonable assumptions.
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The nonlinear case of backward stochastic differential equations (BSDE, in Short) was first introduced by

Pardoux and Peng'". It has the following form
Y,=é+ [ £, Z)ds~[ Z.dB, (1)
where B is a standard Brownian motion.

BSDE has wide applications in many research fields such as mathematical finance, stochastic control, non-
linear analysis and so on. Since there are many models of physical phenomena which exploit the self—similarity
and the long range dependence, fractional Brownian motion (fBm, in short) is a very useful tool to characterize
such type of problems. Naturally, it is significant to study the BSDEs driven by {Bms.

Let us recall that,an fBm B" =(B”,:=0) with Hurst parameter He (0,1) is a mean zero Gaussian process
whose covariance is given by

EIB" B (0= 1(e[" +]s[" = [t=s")

For H = 1/2, the fBm is a standard Brownian motion. As was shown in[ 2], an fBm B” with Hurst param-

eter H 7 1/2 is neither a semimartingale nor a Markov process. Thus, the classical stochastic theory cannot be
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used to define a stochastic integral with respect to fBm. In recent years , Duan and Hu(see e.g.[ 3-5]) have devel-
oped an efficient way to define stochastic integral with respect to fBm, which is based on lto-Skorohod integral
and fractional white noise.

BSDE driven by fBm (fBSDE, in short) was first introduced by Biagini et al."*’, when they studied the sto-
chastic maximal principle in the framework of an fBm. There has been some literature on fBSDE. Hu and Peng'”

studies a general nonlinear fBSDE with the form
Y,=gm)+ [ s, Y. Z)ds [ Z,dB" t€[0,T], (2)
where n,=1n,+ J’(:b_gds + J’(:O'SdBf],nO,bs,a's are deterministic constants or functions, g is a continuous func-
tion of polynomial growth and the generator f satisfies a uniformly globally Lipschitz condition. They obtained
the existence and uniqueness of the solutions under some mild assumptions by the quasi-conditional expectation
of fBm. Based on[ 7], Maticiuc'™' is concerned with the existence and the uniqueness of the solution for a multi-di-
mensional fBSDE. Borkowska'®' proves the existence and uniqueness of generalized fBSDE which is driven by an
additional term, i.e. an integral with respect to an increasing process. The BSDEs driven by both standard and

fractional Brownian motions have been considered in[10]. Zhang'"" uses the quasi-conditional expectation to

study the linear fBSDE. Moreover, the comparison theorem and the comonotonic theorem of the solution of linear
BSDE are derived.

On the other hand, for BSDE driven by the standard Brownian motion, El Karoui, Peng and Quenezm] first
studies the L’(p>1) solution of problem (1) with the parameters also in the L” space. Many papers have been
devoted to existence and uniqueness of L” solution of BSDE under weaker assumptions on the generator f. We
can see the work of Briand [ 13 ]for a study of L"(p>1) solution with the generator f satisfying monotonic condi-
tion, and the work of Chen[ 14 Jfor a study of L"(1 <p<2) solution with continuous generator. In addition, Zhang
and Zhao'"' prove the existence and uniqueness of the L"xL’(p=2) solution of BSDE with /-growth coeffi-
cients. However, to our knowledge , there are few works on the L’(p=2) solutions of fBDSE. Based on the exist-
ing works, our paper is to study the L"(p=2) solutions of fBSDE(2) when g(n,) and f(#,0,0,0) are in space.

Here it needs to point out that the main problem of the study of BSDEs in the fractional framework is the absence
of a martingale representation type theorem with respect to an fBm. In our approach , we use the localization meth-
od and the generalized Ito formula instead of constructing a contraction map on (Y,,Z,) in LP(Q,F,P) space as
shown in[ 12].

The rest of paper is organized as follows. In Section 2 we recall some definitions and results about fractional
stochastic integrals. We study the existence and the uniqueness results of solution of fBSDE first, and then an
equality about Malliavin derivative of solution is presented in Section 3. Section 4 is devoted to prove that the
problem has a uniqueness solution (Yr,Zt) for ¥, eL"(€Q, £.P) besides the L" norm estimates of solutions (Yt,Zt)

are obtained.

1 Prieliminaries

In this section, we recall some important definitions and results concerning the Ito-Skorohod integral with re-
spect to an fBm, Ito formula and quasi-conditional expectation with respect to an fBm. For further details, the
readers can refer to [ 16-17].

Throughout our paper, we assume that the Hurst parameter H always satisfies H > 1/2, Given continuous

functions & and m on [0,T],we put

<§’n>z £ I()[J’old)(ua”)gunvdudv ,
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where qb(u,v) = H(ZH— l)lu — o2, Settin £= 1, we denote ”5”52 = <§’§>; For any t e [O, T], <§,1]>t is an Hilbert
scalar product. Let Li([O, T]) be the completion of the space of continuous functions under this scalar product,
and we have the continuous embedding Lz([O, T]) CLi([O, T]) (see e.g.[ 18]).
Let P, be the set of elementary random variables of the form
r " r "
) =f(f, £0dB]..... [, £,(0dB),
where f is a polynomial function of n variables. The Malliavin derivative Df.l of an elementary variable FeP,

is defined by
20 T T
D"F= Z%( [y E@dBY ... [} £,(0dB)é (5)., 0<s<T.
J=107

Consequently, we can further define another derivative by
D"F= [ d(t,0)D! Fdo.

When the Hurst parameter H > 1/2, we recall the following Ito formula for general integral process which
has been proved in[4].

Theorem 1 Let 0, = fOFudBu ,t€[0,T], where (F,0<t<T) is an F, —adapted process in L*([0,T]). As-
sume that there is an a>1—-H such that lu—vl<6,6>0, such that o\u_ugm-mﬂoElD:I(F“ - FU)I2 =0 and
EIF, - FF<Clu-of". Let f(£,2):{0,T]*R—R be a function having the continuous derivative in ¢ and the
second order continuous derivative in x. Assume that the first order derivatives are bounded , and

E[}1F D dds < ,(f(s.n,)F .s€[0.T]) e L}(]0.T1).

Then

f@,m,)=7(0,0)+ joa n)ds + gf(sn )dn, + j fsn)FD n.ds,a.s. 1€[0,T].

Next we will introduce the quasi-conditional expectation with respect to an fBm. For any t€(0,7] , set Hl®"

be the set of all real symmetric functions f, of n variables on [0,¢]" such that

n! d)s,r SpyeeesS I (1) |ds+-ds dr;---dr <oo.
[() i n 1 n n\"1 l 1 no 1 n

n=0

Denote by iz(Q,F,P) the set of FELZ(Q,F,P) such that F has the following chaos expansion

F=31(1)
n=0
For all t€[0,T], f,, when restricted to [O,t]n, is in H,®" and
In(fn) £ J‘OS[,.“.,IH <" !fn(tl’ “"tn)dBl{.I' ’ dBl”

Then we recall the notation of quasi—conditional expectation and an important lemma which are stated in

[7].
Definition1 If Fe iz(Q,F,P) then the quasi—conditional expectation(see[ 17]) is defined as

E[FIF) 21 (£753) -
where

®n
[[o,,](tl’ ) = [[O’T](tl)...l[oﬂ(tn) )

Theorem 2 If a real valued stochastic process (Fu,O SYTES T) satisfies
E{ﬁ [ bl f tdudo+ [

and [ f,dB" € [(Q,F,P), then

D! ﬁ|2dudp}<oo
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ED, ! f“dBfIF,] -0.

2 L?Solutions of fBDSE

In this section, we denote
t t
n,=n,+[,bds+[ o, dB", 0<i<T, (3)
r
where 7, is a constant, b, is a deterministic function in ¢ such that jo |b(s)|ds <, and o, is a deterministic

continuous function such that lloll, exists for all ¢ with illallt >0.

de
Now we consider the following {BSDE with the Hurst parameter H > 1/2:

{dYL = —f(t.mY,.2)dt+Z,dBY, 1e[0.T],
Y, =€,
where the generator f(t,1,y,2):0,7]x Q X RX R— R is a progressively measurable function.
Definition 2 A pair of F,~ adapted processes (Y,,Z,,0<t<T) is said to be a solution of fBSDE (4) if

(4)

we have
Y,=é+ [ f(sm.YoZ)ds~ [ ZdB", 0<i<T.
Introduce the set
C,={d(t,m,):d(t.x) is a continuously differentiable in ¢ and twice continuously differentiable in «}. (5)

And denote by V. the set of process Y, with the form

V,={¥.=¢(.n.)2e[0.T].b(1.m,) € C,}. (6)
Let V, be the completion of V, under the following 8- norm
IV = [ e®EIY Pde = [ e Eldp(t,m, JPd. (7)

Hung and Peng'” first proves that a pair of solutions in V, XV, to BSDE(4) uniquely exists.
Lemmal Given (y,,zt) eV, xV,, the following fBSDE with Hurst parameter H>1/2 ,

— H
{dYt = —f(tm,y,2)di+ Z,dBY, 0<i<T. "

Y, =¢,
has a solution (Y,, Zl) eV, xXV,.

Theorem 3 Let n,=7n,+ Iolbsds + J’OtasdBfI be defined as(3). For some positive constant ¢, we assume

inf O-t

that ,_,% o =¢,, where 7,4 f(:(b(t,r)ardr. Let §=g(7)T) be a square integrable martingale, where g is a

t

continuous function of polynomial growth. The generator f[0,7]x QA XRXR—R is progressively measurable
in (y,2), f(£,0,0,0)eL*(Q,F,P) and f satisfies uniformly globally Lipschitz condition with respect to (y,z), i.
e. there exists a positive constant L>0 such that
|f(t,x,y,z) —f(t,x,y',z')l < L(ly =y I+1z —z'l),Vt IS [0, T],x,y,y',z,z' eR.
Then BSDE(4) has a unique solution (Yt,Z[) eV, xV,.

For the proof of Lemma 1 and Theorem 3, one can refer to Proposition 4.5 and Proposition 4.6 in[ 7 [for de-
tails,, respectively.

In order to obtain an equality about Malliavin derivative of solution (Yt,Zt) in Theorem 3, we recall the fol-
lowing results.

Lemma 2(see[7]) Assume b(s,x) and a(s,x),OSs <T,xeR, are continuous in s and continuously dif-

ferentiable in x and both of them are of polynomial growth. For 7, given as(3),if
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[i6(s,m,)ds + [,a(s,m,)dB" =0,Y1 [0, T].

Then

b(s,x) = a(s,x) =0, Vse [0, T], xeR.

Proposition 1 (see [7] ) Assume that the fBSDE (4) has the solution with the form (Y,=u(t,n,),
Z,=v(t,m,),0<t<T) ,where u(t,x) is continuously differentiable in ¢ and twice continuously differentiable in x.
Then

o(t,x) = o u (t,%).
Based on the above statements, the solution (Y, = u(t,n,),Z, =v(t,n1),0$t$ T) of (8) has the following
property
1Y, ()DL )dr= [ (0 (0 )0 (0= 6(00) 00 (=22, (9)
We will show that the the solution (YL,Z,) eV, xV, has the same property as the form(9).
Theorem 4 Assume that fBDSE(4) has a solution (Y,,Z,) eV, x V,, then for all t€[0,7], we have

'y =2tz (10)

t
O-I

Proof There exists a subsequence (Yk,Zk) €V, xV, which converges to (¥,Z) in V, %V, and satisfies
T T
Yoo =+ [ f(s.m(5),Y, (). 2,(5))ds = [ Z,.(s)dB.ee[0,T]. (11)
By Proposition 1, (Yk’Zk) has the form of
(Yk(t) = uk(t7n(t)) Z,(t) =v,(t.n( )) te[0,7],

where u,,v, € C, and

0 (1m(0)) =) 2 (1.m(1)).
Moreover,
E[ e"1Y,(1) - Y (1)Pd:—0
and
E[ ¢"12,(1) - Z(1)Fdt—0.
Thus, for all almost & [0,T], we have
Jim EIY, (1) = Y (1) =
and
lim E1Z, (1) = Z(1)F* =

It follows that

D0 = 00 )= 2O ) = S 2010, (12

as k—> oo. Since Lz([(), T]) CL;([O T]) DHk(t) also converges to

O'(r) . .
O'(t) 201 [o,](r) in L (Q,F,P),

Furthermore , for all almost ¢ e [0, T], we gel
a(r),,
o(t)

D Y(t)—hmD Y(t)—hm E; L)1 [0[( r)= Z(1)1 [OL](r), (13)

which implies
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DY, = [ d(t.r) DY (1)dr= %Zt (14)

t

and then completes the proof of Theorem 4.

3 L’ Solutions of fBSDEs

In this section, we will study the L" solutions of fBSDE(4) based on the previous section.

Theorem 5 We assume the conditions in Theorem 3 on f,g,b,,0,. In addition, assume that both b,,0, are
bounded, i.e. there exists a positive constant M such that 15 §M,|a',| <M. The generator | satisfies uniformly
globally Lipschitz condition with respect to (x,y,z) i. e. there exists a positive constant L >0 such that

|f(t,x,y,z) —f(t,x',y',z')l < L(lx —x'l+ly—y'l+1z —z'l),
forany te [O, T], and x,x",y,y’,z,z2" € R . Moreover,
E[1f (5,0,0,0)|
for p=1. Then fBSDE(4) has a unique solution (Y,,Z,,O <1< T) for Y, Esz(Q,F,P) and (Y[,Zl) satisfies the

2p
ds<<oo,

following inequalities
Ef1Y < {1+ B[] (5.0,0,0)ds)
and
E[Y 1z =1+ B (5,0.0.0)ds)
where the constant C depends only on p,T,M,L,c,.
Proof By Theorem 3,fBSDE(4) has a unique solution (Y A ) eV, xV,. For M,NeZ', set
¥(y) zyzl{_MS)(M} M2y =M, M2y + ML

(P/V.,p(y) :ypl{()syc\f} +N" ](py— (P B I)N)1{9’>f"}' (15)
Applying Ito formula to the process l,[/M(Y,), we obtain
dyr, (Y,) =y, (Y)Y, +4",(Y,)Z,D/Y dt. (16)
By(16) and Theorem 4 ,we have
i, (Y,) = |:—lﬂ'M(Y[) F(tm. Y. Z)+y" (Y, ) ‘IZ ﬂdt +4',(Y,)Z,dB;. (17)

Furthermore , applying Ito formula to eﬁlgoeV (l/f (Y )), we deduce

t

deﬂtgo\p(lﬁw( )) ﬁe QD\p(lﬁ ( ))dt+e ¢ “P(L/j ( ))dlﬂ ( )+eﬁt<pHWp(wW(Yl))w’M(YI)ZLDt”wM(Yt)dt:
Be” @ (Wy(Y))de =" (0 (V)b (V) S (t0,2Y,2,)de + ™ 7¢ (W (V)9 (Y )IZ P +

eﬁlQDI[\.‘:p(lﬂfw(yl))l'//,;‘W(YL)Z[dBH +eﬁt¢”\ p(wM(YL))'J/ ( )Z DH ( [)dt (18)

In order to estimate the right hand side of ( 18),we first derive

D"y, (v,)=D"Y +2MD"Y 1, _ —2MD"Y 1 =2 ’YZI L +2M ’Zl -

¢ -m<y<m) t ey =) ¢ Y.< - M) (-M<v.<m} {v,=M}
r _ &t _ 6-: !
2M Z 1{y< -My T ?Z[(ZYII{_Ms Y, <M} + 2M1{Y,>M} - 2M1{y,< —M}) - ?Ztl/jM(Yt)’ (19)

where by the chain rule of Malliavin derivative the following equality is used

DY = [[d(t,r)D"Y2dr= [, $(1,r)2Y,DY,dr=2Y, [ d(t,r)D"Y,dr=2Y,D""Y, = Z%Y,Zl . (20)

L

Substituting(19) into(18) and integrating over [¢,T] yields
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eﬁ’sow,p(w(x))=eﬁ"‘¢.w,,,(¢ ((n,)))-B] e so\p( S))ds+ [P S (V) (5.0, 2 )ds =

[le »2 0 W V) 2 feﬁéso'sv.p(wM(Yg»w'M(YS)ZSdBf’—

f eﬁ\* O-‘s
! log

s

(21)

A UNOR))

Noting that (Y,Z)eV,xV, and go'w(lpM(Y,)),l,b'M(Y[) are bounded, we take the expectation on both sides

of the equality (21 )and get

B (W, (¥)+BE[ eﬁko\p(wM(Y) ds+ [ 0 o ¢l

Ef " B0 B =" Ep (i, (gn)+E] ‘eﬁkozv,p(ab Y (V) flsm, Yo Z)ds. (22)

Accordlng to the globally Lipschitz condition of f, we have
|f(~9v77.<aY.st) $|f(7 tAgl )
Thus it follows from(22) that

B W, (V) +BE [ e 0, ()

B g o) [ 2. [ ds +

x

E[ " e VW (V|2 [ ds < B, (e )+ LE[ @', (V) |0 (V)] ¥
LEJ;TGBS gD’;\'(WM( Teﬂs (pM
EJ‘,TCBS GD’NWM(Y )) f(S,0,0,0)|ds. (23)

By the monotonic convergence theorem,as M — % and N— % then we have

SEY [ +BE[ [ ds +(dpt - 2)E e b9y P |7 [ds <& Elg(m, ) +2pLE [ 1Y, ds +
opLE [ 1Y Y NZ ds + 2pLE [ e’”wﬁ‘ i lds +2pE [ 1Y 1 (5,0,0,0)ds. (24)
Then, by Young's inequality and the assumption that
inf 6-
0<r<71‘ ?2‘30 ’ (25)

becomes

FEY +BE[ MY ds+ (497 = 3p)e [ PV 1Z Pds < e Elg(n, ) + LE[ ' ds +

{pL +(2p-1)(L+1) }Ef 1Y s+ E [ €1 £(5,0,0,0)"ds, (26)
o
where 8> pC—LZ +(2p—1)(L+1). Since both b0 are bounded, it is not difficult to check
0
LE[, P[P ds<C.,. (27)
On the other hand, g is a continuous function of polynomial growth ,which leads to
¢ Elg(n, )" <C.. (28)

Combining(27)-(28)with(26) ,we arrive at
L2 T s J T S - T S
(B— ch —(2p-1)(L+ I)JE Jy 1Y ds+ (49> = 3p)e, B[ "1V CIZPds < C, + E [ €”1f (5,0,0,0)ds . (29)

2p

which implies that ¥, e L7(€),F,P) and the solution (Y,,Z,) satisfies
B[ s < c(l vE[) 'y(s,o,o,o)fﬁds)

and
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[10]

[11]

[12]
[13]

[14]

[15]

[16]

[17]

[18]

EfIY P12 Pds < C(1+ B[] (5,0.0.0)7ds).

Here the constant C depends only on p,T,M,L,c,. This puts an end of proof of Theorem 5.
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