Clifford 分析中 Isotonic 函数向量带位移的 非线性边值问题

鄢盛勇

(成都师范学院数学系,四川成都611130)

[摘要] 讨论了Isotonic 函数向量的一类带位移非线性边值问题,利用积分方程方法和Schauder不动点原理证明了问题解的存在性,并给出了解的积分表达式.

[关键词] Clifford分析, Isotonic 函数向量, 非线性边值问题

[中图分类号]0175.5 [文献标志码]A [文章编号]1001-4616(2015)04-0028-04

A Nonlinear Boundary Value Problem with Shift for Isotonic Functional Vector in Clifford Analysis

Yan Shengyong

(Department of Mathematics, Chengdu Normal University, Chengdu 611130, China)

Abstract: This paper discusses a class of nonlinear boundary value problem with haseman shift for isotonic functional vector in Clifford analysis. By the integral equation method and Schauder fixed-point theorem, we prove the existence of the solution for the problem, and give the integral representation of solution.

Key words: Clifford analysis, Isotonic functional vector, nonlinear boundary value problem

Clifford 分析是近代分析的重要分支,它有非常重要的理论意义和应用价值,如在 Maxwell 方程,Yang-Mill 场理论以及量子力学等方面都应用它的一些结论 [1]. 在文[2-4] 中利用 Plemelj 公式解决了高维空间中某些边值问题. 最近文[5-10] 研究了定义于 \mathbf{R}^{2m} 中子区域而取值于复 Clifford 代数 \mathbb{C}_m 且满足 $\partial_x f(x) + i \tilde{f}(x) \partial_{x_2} = 0$ 的 Isotonic 函数,其中 $\partial_x = \sum_{j=1}^m e_j \partial_{x_j}$, $\partial_{x_j} = \sum_{j=1}^m e_j \partial_{x_j}$,得到了其柯西积分公式,Plemelj 公式,并建立其与多复变全纯函数、Hermitean 单演函数、双正则函数的紧密联系. 本文讨论了 Isotonic 函数向量的一类带位移的非线性边值问题

$$A(x) \otimes \boldsymbol{\Phi}^{+}(x) + B(x) \otimes \boldsymbol{\Phi}^{+}(\alpha(x)) + \boldsymbol{C}(x) \otimes \boldsymbol{\Phi}^{-}(x) + \boldsymbol{D}(x) \otimes \boldsymbol{\Phi}^{-}(\alpha(x)) =$$

$$E(x) \otimes L(x, \boldsymbol{\Phi}^{+}(x), \boldsymbol{\Phi}^{+}(\alpha(x)), \boldsymbol{\Phi}^{-}(x), \boldsymbol{\Phi}^{-}(\alpha(x))) , \qquad (1)$$

其中 $\alpha(x)$ 是 $\partial\Omega$ 到自身的同构映射,证明了其解的存在唯一性,并给出了解的积分表达式.

1 预备知识与记号

记 \mathbb{C}_n 为 2^n 维的复 Clifford 代数,其正交基为 $\{e_A:A=\{h_1,\cdots,h_n\},1\leqslant h_1<\cdots< h_r\leqslant n\}$,常记 $e_\varnothing=e_0$, $e_A=e_{h_1}\cdot e_{h_2}\cdot \cdots e_{h_r}$,其基底元适合下列规则: $e_ke_j=-e_je_k,k\neq j$; $e_j^2=-1,k,j=1,\cdots,n$. \mathbb{C}_n 中的元 $a=\sum_A a_Ae_A,a_A\in\mathbb{C}$,其主对合,共轭分别定义为 $\tilde{a}=\sum_A a_A\tilde{e}_A,\tilde{e}_A=(-1)^re_A$; $\bar{a}=\sum_A \bar{a}_A\bar{e}_A$, $\bar{e}_A=(-1)^{\frac{n+1}{2}}e_A$,其模为 $|a|=(\sum_A |a_A|^2)^{\frac{1}{2}}$.设 Ω 是 \mathbb{R}^n 中具光滑定向的 Liapunove 边界 $\partial\Omega$ 的有界域,定义于 Ω 取值于 \mathbb{C}_n 的函数可表示为 $f(x)=\sum_A f_A(x)e_A$,这里

收稿日期:2014-09-12.

基金项目:教育部科学技术研究重点项目(212147)、四川省教育厅科研基金项目(10ZC127).

通讯联系人:鄢盛勇,副教授,研究方向:函数论与偏微分方程的边值问题. E-mail:459138166@qq.com

 $f_A(x)$ 是复值函数. Dirac 算子定义为 $\partial_x = \sum_{i=1}^n e_i \partial_{x_i}$,若 $\partial_x f(x) = 0, x \in \Omega$,则称 f(x) 是 Ω 上的(左)正则函数.

用 $\tilde{H}^{\beta}(\partial\Omega,\mathbb{C}_n)$, $(0<\beta<1)$ 表示定义于 $\partial\Omega$ 取值于 \mathbb{C}_n 的 Hölder 连续函数的集合. 设 $F(x)=(f_1(x),\cdots,f_p(x))$, $G(x)=(g_1(x),\cdots,g_p(x))$ (其中 $f_i(x)$), $g_i(x)\in\tilde{H}^{\beta}(\partial\Omega,\mathbb{C}_n)$)是函数向量,定义加法和乘法运算为 $F+G=(f_1+g_1,\cdots,f_p+g_p)$, $F\otimes G=(f_1\cdot g_1,\cdots,f_p\cdot g_p)$. 定义其绝对值为 $|F|=(\sum_{j=1}^p \left|f_j\right|^2)^{\frac{1}{2}}$. 若 $|F(x)-F(y)|=(\sum_{j=1}^p \left|f_j(x)-f_j(y)\right|^2)^{\frac{1}{2}}$ $\leq M_0|x-y|^{\beta}$,(M_0 是一个与 $\partial\Omega$ 无关的正常数,以下 M_1,M_2,\cdots 都与此类似),则称函数向量 $F(x),x\in\partial\Omega$ 在 $\partial\Omega$ 上依绝对值 Hölder 连续,由 [4] 有 $|F+G|\leqslant |F|+|G|,|F\otimes G|\leqslant M_1|F||G|$. 显然若函数向量 Hölder 连续,等价于其每一个分量函数都是 Hölder 连续的,用 $H^{\beta}(\partial\Omega,\mathbb{C}_n)$, $(0<\beta<1)$ 表示依绝对值 Hölder 连续的 p 维函数向量的集合,对 $\forall F(x)\in H^{\beta}(\partial\Omega,\mathbb{C}_n)$,定义模为 $\|F\|_{\beta}=C(F,\partial\Omega)+H(F,\partial\Omega,\beta)=\sup_{x\in\partial\Omega} |F(x)|+\sup_{x\neq y,x,y\in\partial\Omega} \frac{|F(x)-F(y)|}{|x-y|^{\beta}}$. 于是 $H^{\beta}(\partial\Omega,\mathbb{C}_n)$ 构成 Banach 空间,且 $\forall F,G\in H^{\beta}(\partial\Omega,\mathbb{C}_n)$, $\|F+G\|_{\beta}\leqslant \|F\|_{\beta}+\|G\|_{\beta}$, $\|F\otimes G\|_{\beta}\leqslant M_2\|F\|_{\beta}\|G\|_{\beta}$.

2 Isotonic函数与Isotonic柯西型积分

以后设 n=2m ,考虑函数向量空间 $H^{\beta}(\partial\Omega,\mathbb{C}_m)$. 令 $I_j=\frac{1}{2}(\mathbb{I}+ie_je_{j+m}), j=1,\cdots,m$, $I=\prod_{j=1}^m I_j$ 称为相应的素幂等元,其基本性质有: $\forall a\in\mathbb{C}_m$,有 $aI=0\Leftrightarrow a=0$; $e_{j+m}aI=i\tilde{a}e_jI$, $e_jaI=-i\tilde{a}e_{j+m}I, j=1,\cdots,m$; Clifford 向量 x 及相应 Dirac 算子可改写成 $x=\sum_{j=1}^m (x_je_j+x_{j+m}e_{j+m})$, $\partial_x=\sum_{j=1}^m (e_j\partial_{x_j}+e_{j+m}\partial_{x_{j+m}})$.引进如下 Clifford 向量及相应 Dirac 算子: $x=\sum_{j=1}^m x_je_j, \partial_{x_j}=\sum_{j=1}^m e_j\partial_{x_j}$, $x=\sum_{j=1}^m x_{j+m}e_j, \partial_{x_j}=\sum_{j=1}^m e_j\partial_{x_{j+m}}$.

定义 2.1 若函数向量 F(x) 的每一分量 f(x) 在 Ω 中是 Isotonic 的,则称 F(x) 是 Isotonic 的.

定义 2.2 设 $f_i(y) \in \tilde{H}^{\beta}(\partial\Omega, \mathbb{C}_m)$,称 $\varphi_i(x)$ 为 Isotonic 柯西型积分,

$$\varphi_{j}(x) = \int_{\partial\Omega} \left[\frac{(x - y)(n - f_{j}(y) + i\tilde{f}_{j}(y)n)}{\omega_{2m} |x - y|^{2m}} + \frac{(f_{j}(y)n - in \tilde{f}_{j}(y))(x - y)}{\omega_{2m} |x - y|^{2m}} \right] dS_{y}, x \in \mathbb{R}^{2m} \backslash \partial\Omega.$$

其中 ω_{2m} 是 \mathbf{R}^{2m} 中单位球面的面积, $\underline{n}(y) = \sum_{j=1}^{2m} e_j n_j$ 是 $\partial \Omega$ 在 y 点的外法方向单位向量,而 $\underbrace{y}_{-1}, \underbrace{n}_{-2}, \underbrace{y}_{-2}$ 分别类似于 $\underbrace{x}_{-1}, \underbrace{x}_{-2}$.

记 $\Omega^+ = \Omega, \Omega^- = \mathbf{R}^{2m} \setminus \bar{\Omega}$,易证 $\boldsymbol{\Phi}(x) = (\varphi_1(x), \dots, \varphi_p(x))$ 在 Ω^+ 内都是 Isotonic 的.

引理 **2.1** (Plemelj 公式)设 $f_i(y) \in \tilde{H}^{\beta}(\partial \Omega, \mathbb{C}_m)$,则在 Cauchy 主值意义下有

$$\varphi_j^{\pm}(z) \triangleq \lim_{x \in \Omega^{\pm}, x \to z} \varphi_j(x) = \pm \frac{1}{2} f_j(z) + \varphi_j(z), z \in \partial \Omega . \tag{2}$$

定理 2.1 设 $F(y) = (f_1(y), \dots, f_n(y)) \in H^{\beta}(\partial \Omega, \mathbb{C}_m)$,则在柯西主值意义下有

$$\boldsymbol{\Phi}^{\pm}(z) \triangleq \lim_{x \in \Omega^{\pm}} \boldsymbol{\Phi}(x) = \pm \frac{1}{2} \boldsymbol{F}(z) + \theta \boldsymbol{F}(z), z \in \partial \Omega$$
 (3)

$$\sharp \Phi \boldsymbol{F} = (\theta f_1, \dots, \theta f_p) = \int_{\partial \Omega} \left[\frac{(z - y)(n \boldsymbol{F}(y) + i \boldsymbol{\tilde{F}}(y) n_0)}{\omega_{2m} |z - y|^{2m}} + \frac{(\boldsymbol{F}(y) n_0 - i n \boldsymbol{\tilde{F}}(y))(z - y)}{\omega_{2m} |z - y|^{2m}} \right] dS_y .$$

定理 2.2 设 $F(y) \in H^{\beta}(\partial\Omega, \mathbb{C}_m)$, $\alpha(x)$ 是 $\partial\Omega$ 到自身的同构映射,则在柯西主值意义下有

$$\mathbf{\Phi}^{\pm}(\alpha(z)) = \pm \frac{1}{2} \mathbf{F}'(z) + \theta' \mathbf{F}(z), z \in \partial \Omega , \qquad (4)$$

其中
$$\theta' F(z) = \int_{\partial\Omega} \left[\frac{(\alpha(z) - y)(n F(y) + i\tilde{F}(y)n)}{\omega_{2m} |\alpha(z) - y|^{2m}} + \frac{(F(y)n - in \tilde{F}(y))(\alpha(z) - y)}{\omega_{2m} |\alpha(z) - y|^{2m}} \right] dS_y$$
 , $\alpha(z)$, $\alpha(z)$, $\alpha(z)$ 分别类似于

x, x, $F' = F(\alpha(z))$.

3 问题的提出与解法

 Ω , $\partial\Omega$ 如前所述,A(x), B(x), C(x), D(x), $E(x) \in H^{\beta}(\partial\Omega,\mathbb{C}_m)$ 为给定的 p 维函数向量, $\alpha(x)$ 为 $\partial\Omega$ 上的 Haseman 位移,p 维函数向量 $L(x, \Phi^+(x), \Phi^-(\alpha(x)), \Phi^-(x), \Phi^-(\alpha(x))$ 在 $\partial\Omega \times \mathbb{C}_m \times \mathbb{C}_m \times \mathbb{C}_m \times \mathbb{C}_m$ 连续,我们要找在 Ω^+ 内 Isotonic 的,在 $\overline{\Omega}^+$ 上连续,且满足边界条件(1)和 $\Phi^-(\infty)=0$ 的 p 维函数向量 $\Phi(x)$. 称此边值问题为问题 NR.

首先将此边值问题转化为积分方程.将(3)(4)代入(1)式,得

$$A \otimes (\frac{1}{2}F + \theta F) + B \otimes (\frac{1}{2}F' + \theta' F) + C \otimes (-\frac{1}{2}F + \theta F) + D \otimes (-\frac{1}{2}F' + \theta' F) = E \otimes L.$$
 (5)

令 I_p 表示每一个分量为 1 的 p 维向量. 引入算子: $QF = (A + C) \otimes (\theta F - \frac{1}{2}F) + (B + D) \otimes (\theta' F - \frac{1}{2}F') + (A + I_p) \otimes F + B \otimes F' - E \otimes L$,则边值条件(1)可改写成

$$OF = F , (6)$$

这样求解边值问题NR转化为了求解积分方程组(6).

引理 3.1 「「O」 对任意函数 $g \in \tilde{H}^{\beta}(\partial\Omega, \mathbb{C}_{2m})$,有 $\left\| (S_{\partial\Omega}g)(x) - \frac{1}{2}g(x) \right\|_{\beta} \leq M_3 \|g\|_{\beta}$,其中 $(S_{\partial\Omega}g)(x) = \int_{\partial\Omega} \frac{\bar{y} - \bar{x}}{\omega_{2m} |y - x|^{2m}} d\sigma_y g(y), x \in \partial\Omega$.

定理 3.1 对 $\forall f_j \in \tilde{H}^{\beta}(\partial \Omega, \mathbb{C}_m)$, 有 $\|\theta f_j\|_a \leq M_1 \|f_j\|_a$.

证明 由前述素幂等元 I 及其性质有 $f_iI \in \tilde{H}^{\beta}(\partial\Omega, \mathbb{C}_{2m})$,结合引理 3.1 易得证.

定理 3.2 若 $F \in H^{\beta}(\partial \Omega, \mathbb{C}_m)$,有 $\|\theta F\|_{\beta} \leq M_{12} \|F\|_{\beta}$.

证明 由定义首先易得 $\|f_i\|_{\mathfrak{a}} \leq \|F\|_{\mathfrak{a}}$,由定理3.1及模定义有

 $C(\theta F, \partial \Omega) \leq M_{13} \| F \|_{\beta} ; H(\theta F, \partial \Omega, \beta) \leq \left[\sum_{j=1}^{p} (M_{11} \| f_{j} \|_{\beta})^{2} \right]^{\frac{1}{2}} \leq M_{14} \| F \|_{\beta} \| \theta F \|_{\beta} \leq M_{13} \| F \|_{\beta} + M_{14} \| F \|_{\beta} = M_{12} \| F \|_{\beta}.$

定理 3.3 同胚映射 $\alpha(z):\partial\Omega\to\partial\Omega$ 满足 Lipschitz 条件: $\left|\alpha(z)-\alpha(y)\right|\leqslant M_{15}\left|z-y\right|,z,y\in\partial\Omega$, $F\in H^{\beta}(\partial\Omega,\mathbb{C}_m)$,有 $\|F'\|_{\beta}\leqslant M_{16}\|F\|_{\beta}$.

定理 3.4 设 $F \in H^{\beta}(\partial \Omega, \mathbb{C}_m), \alpha(x)$ 满足定理 3.3 的条件,则有 $\|\theta' F\|_{\beta} \leq M_{17} \|F\|_{\beta}$

定理3.5 设 $F \in H^{\beta}(\partial \Omega, \mathbb{C}_m), \alpha(x)$ 满足定理3.3的条件,则有

$$\|\theta F \pm \frac{1}{2} F\|_{\beta} \leq M_{18} \|F\|_{\beta}, \|\theta' F \pm \frac{1}{2} F'\|_{\beta} \leq M_{19} \|F\|_{\beta}.$$

定理 3.6 设 Ω 是 \mathbb{R}^{2m} 中具光滑定向的 Liapunove 边界 $\partial\Omega$ 的有界域,同胚映射 $\alpha(x)$ 满足 Lipschitz 条件,而函数向量 $L(x, \Phi^+(x), \Phi^+(\alpha(x)), \Phi^-(x), \Phi^-(\alpha(x)))$ 满足:

 $\left| \boldsymbol{L}(\boldsymbol{x}', \boldsymbol{\Phi}^{\scriptscriptstyle +}(\boldsymbol{x}'), \boldsymbol{\Phi}^{\scriptscriptstyle +}(\boldsymbol{\alpha}(\boldsymbol{x}')), \boldsymbol{\Phi}^{\scriptscriptstyle -}(\boldsymbol{x}'), \boldsymbol{\Phi}^{\scriptscriptstyle -}(\boldsymbol{\alpha}(\boldsymbol{x}'))) - \boldsymbol{L}(\boldsymbol{x}'', \boldsymbol{\Phi}^{\scriptscriptstyle +}(\boldsymbol{x}''), \boldsymbol{\Phi}^{\scriptscriptstyle +}(\boldsymbol{\alpha}(\boldsymbol{x}'')), \boldsymbol{\Phi}^{\scriptscriptstyle -}(\boldsymbol{\alpha}(\boldsymbol{x}''))) \leqslant \boldsymbol{M}_{20} | \boldsymbol{x}' - \boldsymbol{x}'' |^{\beta} + \boldsymbol{K}_{20} | \boldsymbol{x}' - \boldsymbol{x}'' |^{\beta} \right|$

$$M_{21} \Big| \boldsymbol{\Phi}^{\scriptscriptstyle +}(x') - \boldsymbol{\Phi}^{\scriptscriptstyle +}(x'') \Big| \Big| + M_{22} \Big| \boldsymbol{\Phi}^{\scriptscriptstyle +}(\alpha(x')) - \boldsymbol{\Phi}^{\scriptscriptstyle +}(\alpha(x'')) \Big| + M_{23} \Big| \boldsymbol{\Phi}^{\scriptscriptstyle -}(x') - \boldsymbol{\Phi}^{\scriptscriptstyle -}(x'') \Big| + M_{24} \Big| \boldsymbol{\Phi}^{\scriptscriptstyle -}(\alpha(x')) - \boldsymbol{\Phi}^{\scriptscriptstyle -}(\alpha(x'')) \Big| \,. \tag{7}$$

设 $L(x_0, \mathbf{0}_p, \mathbf{0}_p, \mathbf{0}_p, \mathbf{0}_p) = 0$,其中 x_0 为 $\partial \Omega$ 上一点,而 $\mathbf{0}_p$ 表示每一个分量都是 0 的 p 维向量.设

$$\begin{split} &A(x),B(x),C(x),D(x),E(x)\in H^{\beta}(\partial\Omega,\mathbb{C}_{\scriptscriptstyle{m}}),\ \text{且}\ \|A+C\|_{\scriptscriptstyle{\beta}},\|B+D\|_{\scriptscriptstyle{\beta}},\|A+1_{\scriptscriptstyle{p}}\|_{\scriptscriptstyle{\beta}},\|B\|_{\scriptscriptstyle{\beta}}< h<1\ ,\ \|E\|_{\scriptscriptstyle{\beta}}=\delta\ ,\ \text{且}\ 0<\delta<\frac{M[1-hM_{\scriptscriptstyle{2}}(M_{\scriptscriptstyle{18}}+M_{\scriptscriptstyle{19}}+1+M_{\scriptscriptstyle{16}})]}{M_{\scriptscriptstyle{2}}(M_{\scriptscriptstyle{27}}+M_{\scriptscriptstyle{28}}M)}\ ,$$
则问题 NR 可解,解表达式为(12)式.

定理2.1,定理2.2,定理3.3,定理3.5以及已知条件可得:

$$\|QF\|_{\beta} \leq M_2 h[M_{18} + M_{19} + 1 + M_{16}] \|F\|_{\beta} + M_2 \|E\|_{\beta} \|L\|_{\beta} , \qquad (8)$$

 $\left| \boldsymbol{L} \right| = \left| \boldsymbol{L}(\boldsymbol{x}, \boldsymbol{\varPhi}^{\scriptscriptstyle{+}}(\boldsymbol{x}), \boldsymbol{\varPhi}^{\scriptscriptstyle{+}}(\boldsymbol{\alpha}(\boldsymbol{x})), \boldsymbol{\varPhi}^{\scriptscriptstyle{-}}(\boldsymbol{x}), \boldsymbol{\varPhi}^{\scriptscriptstyle{-}}(\boldsymbol{\alpha}(\boldsymbol{x}))) - \boldsymbol{L}(\boldsymbol{x}_{\scriptscriptstyle{0}}, \boldsymbol{O}_{\scriptscriptstyle{p}}, \boldsymbol{O}_{\scriptscriptstyle{p}}, \boldsymbol{O}_{\scriptscriptstyle{p}}, \boldsymbol{O}_{\scriptscriptstyle{p}}) \right| \leq \boldsymbol{M}_{\scriptscriptstyle{20}} \left| \boldsymbol{x} - \boldsymbol{x}_{\scriptscriptstyle{0}} \right|^{\beta} + \boldsymbol{M}_{\scriptscriptstyle{21}} \left| \boldsymbol{\varPhi}^{\scriptscriptstyle{+}}(\boldsymbol{x}) \right| + \boldsymbol{M}_{\scriptscriptstyle{22}} \left| \boldsymbol{\varPhi}^{\scriptscriptstyle{+}}(\boldsymbol{\alpha}(\boldsymbol{x})) \right| + \boldsymbol{M}_{\scriptscriptstyle{22}} \left| \boldsymbol{\Phi}^{\scriptscriptstyle{+}}(\boldsymbol{\alpha}(\boldsymbol{x})) \right| + \boldsymbol{M}_{\scriptscriptstyle{23}} \left| \boldsymbol{\Phi}^{\scriptscriptstyle{+}}(\boldsymbol{\alpha}(\boldsymbol{x})) \right| + \boldsymbol{\Phi}_{\scriptscriptstyle{23}} \left| \boldsymbol{\Phi}^{\scriptscriptstyle{23}}(\boldsymbol{\alpha}(\boldsymbol{x})) \right| + \boldsymbol{\Phi}_{\scriptscriptstyle{23}} \left| \boldsymbol{\Phi}^{\scriptscriptstyle{23}}(\boldsymbol{\alpha}(\boldsymbol{x})) \right| + \boldsymbol{\Phi}_{\scriptscriptstyle{23}} \left| \boldsymbol{\Phi}^{\scriptscriptstyle{23}}(\boldsymbol{\alpha}(\boldsymbol{x}) \right| + \boldsymbol{\Phi}_{\scriptscriptstyle{23}} \left| \boldsymbol{\Phi}^{\scriptscriptstyle{23}}(\boldsymbol{\alpha}(\boldsymbol{x})) \right| + \boldsymbol{\Phi}_{\scriptscriptstyle{23}} \left| \boldsymbol{\Phi}^{\scriptscriptstyle{23}}(\boldsymbol{\alpha}(\boldsymbol{x})) \right| + \boldsymbol{\Phi}_{\scriptscriptstyle{23}} \left| \boldsymbol{\Phi}^{\scriptscriptstyle{23}}(\boldsymbol{\alpha}(\boldsymbol{x}) \right| + \boldsymbol{\Phi}_{\scriptscriptstyle{23$

$$\|L\|_{\beta} \le (M_{25} + M_{26} \|F\|_{\beta}) + (M_{20} + M_{26} \|F\|_{\beta}) = M_{27} + M_{28} \|F\|_{\beta}.$$

再由已知条件和(8)式得 $\|QF\|_{c} < M$,这说明算子Q是由T到T到自身的映射.

下证 Q 是连续映射. 对任意的在 $\partial\Omega$ 上一致收敛函数列向量 $\{F_n\} \subset T$,其收敛于 $F \in T$, (指函数向量列 $\{F_n\}$ 的每一个分量函数列 $\{f_n\}$ 都在 $\partial\Omega$ 上一致收敛于函数向量 F 的对应分量 f_j , $j=1,\cdots,p$). 即对 $\forall \varepsilon > 0, \exists N \in \mathbb{Z}^+$, 当 $n > N, x \in \partial\Omega$ 时,恒有 $\|F_n - F\|_2 < \varepsilon$.

$$\begin{aligned} \left| Q \boldsymbol{F}_{n} - Q \boldsymbol{F} \right| & \leq h M_{1} \left[\left| \theta(\boldsymbol{F}_{n} - \boldsymbol{F}) - \frac{1}{2} (\boldsymbol{F}_{n} - \boldsymbol{F}) \right| + \left| \theta'(\boldsymbol{F}_{n} - \boldsymbol{F}) - \frac{1}{2} (\boldsymbol{F'}_{n} - \boldsymbol{F'}) \right| + \left| \boldsymbol{F}_{n} - \boldsymbol{F} \right| + \left| \boldsymbol{F'}_{n} - \boldsymbol{F'} \right| \right] + \\ & \delta M_{1} \left| L(\boldsymbol{x}, \theta \boldsymbol{F}_{n} + \frac{1}{2} \boldsymbol{F}_{n}, \theta' \boldsymbol{F}_{n} + \frac{1}{2} \boldsymbol{F'}_{n}, \theta \boldsymbol{F}_{n} - \frac{1}{2} \boldsymbol{F}_{n}, \theta' \boldsymbol{F}_{n} - \frac{1}{2} \boldsymbol{F'}_{n}) - L(\boldsymbol{x}, \theta \boldsymbol{F} + \frac{1}{2} \boldsymbol{F}, \theta' \boldsymbol{F} + \frac{1}{2} \boldsymbol{F'}, \theta \boldsymbol{F} - \frac{1}{2} \boldsymbol{F}, \theta' \boldsymbol{F} - \frac{1}{2} \boldsymbol{F'}) \right| \leq \\ & h M_{1} \left[M_{18} + M_{19} + 1 + M_{16} \right] \left\| \boldsymbol{F}_{n} - \boldsymbol{F} \right\|_{\beta} + \delta M_{1} \left[M_{21} \right| \theta(\boldsymbol{F}_{n} - \boldsymbol{F}) + \frac{1}{2} (\boldsymbol{F}_{n} - \boldsymbol{F}) \right| + M_{22} \left| \theta'(\boldsymbol{F}_{n} - \boldsymbol{F}) + \frac{1}{2} (\boldsymbol{F'}_{n} - \boldsymbol{F'}) \right| + \\ & M_{23} \left| \theta(\boldsymbol{F}_{n} - \boldsymbol{F}) - \frac{1}{2} (\boldsymbol{F}_{n} - \boldsymbol{F}) \right| + M_{24} \left| \theta'(\boldsymbol{F}_{n} - \boldsymbol{F}) - \frac{1}{2} (\boldsymbol{F'}_{n} - \boldsymbol{F'}) \right| \right] \leq M_{1} \left[h(M_{18} + M_{19} + 1 + M_{16}) + \delta M_{26} \right] \left\| \boldsymbol{F}_{n} - \boldsymbol{F} \right\|_{\beta} \leq M_{29} \boldsymbol{\varepsilon} . \end{aligned} \tag{11}$$

所以 Q 是映射 T 到自身的连续映射. 根据 Arzela-Ascoli 定理知, T 是 p 维连续函数向量空间 $C(\partial\Omega)$ 中的紧子集. 因此 Q(T) 也是 $C(\partial\Omega)$ 中的紧子集. 由 Schauder 不动点定理知, 至少存在一个 p 维函数向量 $F_0 \in H^{\beta}(\partial\Omega,\mathbb{C}_m)$ 满足 $QF_0 = F_0$. 因此问题 NR 至少存在一个解:

$$\boldsymbol{\Phi}(x) = \int_{\partial\Omega} \left[\frac{(x - y)(n \, \boldsymbol{F}_0(y) + i \, \tilde{\boldsymbol{F}}_0(y) n)}{\boldsymbol{\omega}_{2m} |x - y|^{2m}} + \frac{(\boldsymbol{F}_0(y)n - i n \, \tilde{\boldsymbol{F}}_0(y))(x - y)}{\boldsymbol{\omega}_{2m} |x - y|^{2m}} \right] dS_y, x \in \Omega^{\pm}.$$
(12)

显然满足 $\Phi^{-}(\infty)=0$,由文[10]知 $\Phi(x)$ 的每一个分量函数在 $\overline{\Omega}^{+}$ 内连续,从而 $\Phi(x)$ 在 $\overline{\Omega}^{+}$ 内连续.

[参考文献]

- [1] BRACKX F, DELANGHE R, SOMMEN F. Clifford analysis [M]. Pitman, London: Res Notes Math, 1982;76.
- [2] HUANG S. Nonlinear boundary value problem for biregular functions in Clifford analysis [J]. Science in China Ser A, 1996, 39(3):1152-1164.
- [3] QIAO Y Y. A boundary value problem for hypermonogenic functions in Clifford analysis [J]. Science in China Ser A Mathematics, 2005, 48:324-332.
- [4] 鄢盛勇. 四元数分析中正则函数向量的非线性边值问题[J]. 华南师范大学学报(自然科学版),2012,44(4):24-27.
- [5] SOMMEN F, PEÑA-PEÑA D. Martinelli-Bochner formula using Clifford analysis [J]. Arch Math, 2007, 88:358-363.
- [6] ABREU-BLAYA R, BORY-REYES J. A Martinelli-Bochner formula on fractal domains [J]. Arch Math, 2009, 92:335–343.
- [7] ABREU-BLAYA R, BORY-REYES J, PEÑA-PEÑA D, et al. A holomorphic extension theorems using Clifford analysis [J]. Complex Anal Oper Theory, 2011, 5:113-130.
- [8] 库敏,杜金元,王道顺. Clifford分析中Isotonic柯西型积分的边界性质[J]. 数学学报,2011,54(2):177-186.
- [9] 李婧. 复 Clifford 分析中 Isotonic 函数的性质及其边值问题[D]. 石家庄:河北师范大学,2010.
- [10] 鄢盛勇. Clifford 分析中 Isotonic 函数带位移的非线性边值问题[J]. 重庆师范大学学报(自然科学版),2013,30(2):34-38.

「责任编辑:黄 敏〕