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Strong Consistency of BRPA Estimators for
Maximizer of Nonparametric Regression Function
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Abstract : The best-r-point-average (BRPA ) estimator of the maximizer of regression function has certain merits in appli-
cation. The strong consistency of the BRPA estimator is obtained under the certain conditions which extends the existing
results. The results are illustrated by Monte-Carlo simulations.
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Consider a regression model :
Y=m(X)+e, i=1,---,n, (1)
where m() is a L-measurable function defined on a bounded convex closed set D C R’ ,with a unique maximum

at x,€D ,thatis,forany xeD and x#x, ,

m(x,) = m(x). (2)
Now,let X,,---,X, be design sequences corresponding to the response variables Y,,---,Y i.e.,
Y=m(X)+e,i=1,2,....n, (3)

where &,,--,¢,, are i.i.d random errors. Suppose that {X,i=1,---,n} and {e,i=1,---,n} are independent if
{X,,i=1,+--,n} are random.

The objective is to determine x, based on n observations (X,Y)),---,(X,,Y,). The estimation of x, by traditio-
nal approach is done through the estimation of the regression function. That is, the function m(") is estimated by
some nonparametric method first and then the maximizer of the estimated function m(*) is taken as the estimation

of x,. The regression function can be estimated by various methods such as the kernel , the nearest neighbor, the
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orthogonal series or the smoothing splines, etc.. For details, we refer the reader to, among others, Ibragimov and
Khas’ minskii"’and Muller'>.

In recent years another method called the best—r—point average (BRPA )is developed for the estimation of
the maximizer of a regression function in a quite different spirit. The BRPA is coined by engineers in field

studies. The method can be described as follows. Let Y <:-+ <Y be the order statistics of response variables

{Y,,i=1,---,n}. Then, x, is estimated by %,(r)= lZHX 1

_ -1 . ) , )
pp ISt 721:0)(1,,,, ,with the average of those X,'s correspond-

ing to the r largest order statistics ¥'s , where X=X, denotes the X, corresponding to ¥, =Y, . The estimator

#%,(r) is called the BRPA estimator. The BRPA method was proposed by Chengchien (1990) ", then the theoreti-

cal justifications of the BRPA method were first provided by Chen et al.""'in which the weak consistency and cer-
tain rates of convergence of the BRPA estimator under some sufficient conditions were established. Since then,
Bai et al.(1999"',2003")and Wu et.al. (2000 ) generalized the above results in different aspects. But strong
consistency of BRPA is still not established.

In this paper, we will study the strong consistency under certain conditions , which extends the above exist-

ing results.
1 Main Results and Its Proof

Before giving main results , we introduce the following notations and conditions :

Let ACR’, xCR", ¢ denotes a general constant which may change from one expression to another ex-
pression, [a] denotes the largest integer which is less and equals to @ and |A| denotes Lebesgue measure of set
A, f(x,A)=sup{d(x,y):y €A}, where d(x,y) denotes the Euclidean distance between the points x and y . For arbi-
trary 6>0 ,write A(0) ={x:m(x,) — m(x) <4).

Al m(x) takes the largest value at the unique point x,e DCR".

A2 For arbitrary 6>0, 14(8) >0 ,and as 6—0, f(x,,A(5))— 0.

Bl When X,---,X, are fixed design sequences, they are designed by certain density function g(x) de-
fined on D.

B2 When X,---,X, are random sequences, X,,--,X, are i.i.d. samples with the common density g(x).
And {X.,i=1,---,n} and {g,i=1,---,n} are independent.

C {e,i=1,---,n} are iid. with the distribution function F(x) and the density function f(x)
and @(F)=sup{x:F(x)< 1} < .

Theorem 1 Assume that the conditions A1, A2 and C are satisfied, X,,---,X, are design sequences

which satisfy the condition B1 or B2 and there exists some ¢>0 , for arbitrarily given xe€D,g(x)>c. Then,
%o(r) = x, almost surely.

Remark 1 Al and A2 are used in Bai et.al.(1999,2003'') and Wu et. al.(2000"""). While B1 and B2
are ordinary assumptions which are used in Wu et. al. (2000""). As to C, we remark that practical errors are al-
ways finite.

For the proving Theorem 1, we first need the following lemma.

Lemma 1l Let ¢,i=1,---,n be i.i.d. random variables with the distribution F(x) with w(F)<e and the

density f(x) , &,<---<g,, are the order statistics, then, &, —&, , converges to O completely,i.e.,for an arhi-

trary given 6>0 , z:zlp(s »>0)<oo, where k =[n"] and 2B8<1.

—&-

(n)

Proof Noting that
) = )= P 0Ny

It follows that
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Pley, = £, >8)= [ WFEQ) - Fl) ™S f()dedy =
(n_k”—l'kl,f [ (F ) - F) dFGIF ™ (0dF )=

m [LF @I = F) = (F e +8) = F(x) JdF (x) =

(n—k- 1vkvf TET @I - FE) - (F+8) - F(x)dF(x) <

ol @ - R e =

e e e = P aF ) =

(n+ 1)(n . 2)(1)(—15;3@) Sk k(’i:)%()li ot (0 e
(k+1)(k+2) 1

e D+ 201 = FloF) =37 (4)

where the last inequality is satisfied with enough large n . Noting that 2 = 28> 1 ,thus, for an arbitrary given 6 >0 ,

ZP £~ 8y >8) <. (5)
This completes the proof of the Lemma 1.
Proof of Theorem 1

Write k=[n"]>r where 0<B< % and

Lo={e,-&,.> g}, 0. =(i<kX, ¢A®)<r).
where #4 denotes the cardinal number of the set A .
When the event L, (Q., occurs, there exists at least r integer i<k such that X, €A(8), where

L), N Q! denotes the complementary event of event L, and (,, respectively.

Therefore, for all X; ¢ A(26), it follows that

Y, =mlx, )+e,, Zmlv)-0+e, -2 =mX)+e =Y,
which implies
P(x,(r) g A(28)) < P(L,,) + P(Q.,)- (7)
Hence,
iP(JEO(r) 2428)< Y P(L) + S PQ,). (8)

n=1 n=1
By Lemma 1, the first term is finite. Next, we move to estimate the second term.

Clearly,
P(Q.,)=P(B(k,IA(®)) <r),

in which B(n,p) denotes the binomial distribution with parameters n and p . So by Bernstein inequality,
ZP(QM)\ZE«‘XP n”JAGNAG) - Trﬁ])z)$ D exp(-en”) <, (9)
n P

where ¢ >0 which does not depend on n .
By the condition A1 and A2, which combined with Borel-Cantelli Lemma, Theorem 1 can be obtained easi-
ly. This completes the proof of Theorem 1.

2 Simulations

In this section, we perform some simulations to illustrate the asymptotic theory developed in Section 2 by

Monte- Carlo methods. In our simulation study, we consider regression functions f(x)=exp(—(x — 1)) and error
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distribution U[-1,1] and sample sizes n is taken to be 100 and 400, respectively. Each of the samples is
generated as y,=f(x,)+¢&,i=1,....,n, where the x,’s are random numbers generated from the standard normal
distribution N(0,1) and the x,’s are random numbers generated from the error distribution U[-1,1] by using
Matlab. N=1 000 repetitions are done for each sample size.

For each n, the mean and the averaged absolute deviation of each estimator with r=1,5 are computed
respectively as %z:zlio(r) and %z::llﬁg(r)—xol in N=1 000 repetitions are given in Tables 1, which shows

that the means of BRPA estimators are close to the true maximizer value «x,. As n became larger, the bias of
parameter estimators and corresponding averaged absolute deviation becomes smaller.
Table 1 The mean and the averaged absolute deviation of BRPA estimator in N=1 000 repetitions. The
values in parentheses are the averaged absolute deviation.
r=1 r=5
n=100 1.0040(0.148 0) 1.0050(0.120 0)
n=400 0.999 0(0.0950) 1.004 0(0.076 0)
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