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Abstract:In this paper, we explore directed completions of local dcpos. The following results are obtained. (1) The
directed completions of continuous ( resp. ,algebraic)local depos are continuous ( resp. , algebraic) depos; (2) The category
CDcpo( resp.,ADcpo) of continuous( resp. ,algebraic) depos and Scott continuous maps is a full reflective subcategory of
the category CLDcpo(resp., ALDcpo) of continuous( resp. ,algebraic ) local depos and local Scott continuous maps.
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In the theoretical computer science, posets are required to be directed complete. However, there are
important ordered sets such as the real sets R and the positive integers N which fail to be dcpos. Recent papers
have contributed to the study of posets which are not directed complete. Xu Luoshan''’ introduced the concept of
consistently continuous posets,,and proved that the directed completions of consistently continuous posets are con-
tinuous posets, the category of continuous posets is a full reflective subcategory of consistently continuous posets.
Guan and Wang'?! introduced the concept of continuous local depo. Moreover, Guan'?’ , Xu'*! inspected the prop-
erties of the Cartesian closed of relevant categories of local depos. In this paper,we prove that the directed com-
pletions of continuous local dcpos( resp.,algebraic local dcpos)are continuous depos( resp. ,algebraic dcpos). In
addition , we show that the category of continuous dcpos ( resp., algebraic depos) and Scott continuous maps is a
full reflective subcategory of the category of continuous local dcpos(resp.,algebraic local depos)and local Scott
continuous maps. The properties and characterizations of continuous local depo generalize the relevant results of

continuous depo.

1 Preliminaries

We recall some basic notions and results about local dcpos. Let P be a poset. A subset D C P is bounded di-
rected if D is directed and has an upper bound in P. P is a local depo(in short,ldepo)if | p={xeP:x<Plisa
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depo for each p € P.(1It is different from the concept of consistently continuous posets,see Example 1). The nota-
tion V ,D( \/pT D) expresses a least upper bound of the ( directed ) subset DCP in | p.

Let P be a ldcpo and x,y € P. x is local way below y,denoted <<,y , if for any directed subset D C P and
any upper bound p of D,if y< 'V pT D ,then there exists some d € D with x<d. An element k € P is local compact
if &<,k ,and let K,(P)be the subset of local compact elements of P. For each p € P, let [} p=1xePag pl,if
U,p is directed and p= \/J U ,p,then P is a continuous local depo(or briefly, cldepo). P is an algebraic local
depo (or briefly, aldepo)if U ,pNK,(P)is directed and V PT U ,pNK,(P)=p. An upper set U of P is local Scott
open if VPT D e U implies UND# (J for any bounded directed set D€ P and any upper bound p of D. The com-
plement of a local Scott open set is called a local Scott closed set. The collection of all Scott open subsets of P is
called the local Scott topology of P and is denoted by o, (P). The collection of all Scott closed subsets of P is de-
noted by I',(P). A map f; P—(Q between ldcpos is local Scott continuous if for any directed subset D C P and
any upper bound p of D ,f{( \/pT D)= Vpr(D)holds. It is known that f is local Scott continuous between ldcpos P
and Q if and only if f it is continuous from the spaces(P,o,(P) )to(Q,0,(Q)). A non-empty local Scott closed
set A is called a join-prime element if for any two local Scott closed sets B, C,the condition that A € BU C implies
either ACB or ACC. Clearly,the closure of { x} in the space(Q,o,(Q))is a join-prime local Scott closed set.
We use Spec I',(P)to denote the collection of all join-primes of I",(P).

Let P be a depo and x,y € P. Obviously, P is also a cdepo. It is easy to show that x<,y if and only if x<y
in P and o,(P)=0(P) ,where < is the usual way below relation,o,(P) is the usual Scott topology in P.

Example 1 Let P=[0,1] U {2} ,where[ 0,1 ]is the usual unit interval with the usual order and x<2 for
each x € P. The elements 1,2 are upper bounds of the directed set[ 0,1)in P,but the set [0,1) does not have a
least upper bound in P. Then P is not a consistently continuous posets. However, | x is a depo for each x € P.
Hence P is a ldcpo.

Lemma 1'*'  Let P be a poset and X C P with any upper bounds a,b. If a<b or b<a,then \/ A=V X (if
V X,V ,X exist).

Lemma 2'>)  Let P be a ldcpo. For all x,y e P, if x<,y,then there exists a z€ P such that x<, 2< y.

Lemma 3'”)  Let P be a ldcpo. For each x € P, T x is a local Scott open set in P.

Lemma 4'%'  Let P be a ldepo and w,a,b,ve P. If usa<<,b<v,then u<<,v.

Lemma 5%’ Let X be a lower subset of a ldcpo P. X is local Scott closed if for any bounded directed sub-
set DC X and any upper bound p of D, VPTD eX.

2 Main Results

Similar to the proof of Proposition II-1.10'*' | we have the following Proposition 1.
Proposition 1 Let P be a cldcpo. Then an upper set U is local Scott open if and only if for each x € U
there is a u € U such that u<<,x.

Lemma 6 Let P be a cldepo. If X be a lower set in P, then the set X={x € P:there is a bounded directed
set DC X with an upper bound b such that x< V J DVis the closure of X in the space(P,o,(P)).

Proof Obviously,X is a lower set of P and XCX. Let E be any directed subset of X and p any upper
bound of E. Put \/pT E=e. To verify that X is local Scott closed, it suffices to show e € X by Lemma 5. Since P is
a cldepo, U e is directed and e= V| U ,e. For each x<,e, there exists a y € P such that x<(,y<,e by Lemma 2.
Then there exists a v € E such that x¥<,y<<,v. Hence v € EC X, and there exists a bounded directed set D CX
with an upper bound b such that v<< 'V J D by the definition of X. So,there is a d € D such that x<d. Thus x €
X,since X is a lower set. Therefore, { ,eCX and e € X by the definition of X.

Now we show that X is the least local Scott closed set containing X. Suppose that B is local Scott closed and
9



Xu Aijun,et al:Directed Completions of Local Depos

XCB. For each x € X, there exist a bounded directed subset D CX and an upper bound b of D such that x <
V ,,T D. Then V ,j D e B, since B is a local Scott closed set and DCB. Thus x € B and XS B. Hence X is the clo-
sure of X in the space(P,o,(P)).

In this paper,for a cldepo P, the symbol X expresses the closure of subset XC P in the space(P,o,(P)).
For each member p of a ldcpo P, | p is the smallest lower set containing p. Then we have the following corollary

by Lemma 6.

Corollary 1 Let P be a cldepo. Then for each p e P, {p}| :Tp: {x € P:there is a bounded directed set
DC | p with an upper bound b such that x< 'V J Dif.

Proposition 2 Let P be a cldcpo. Spec I"',(P)is closed under directed suprema in I",(P).

Proof Let 2 be a directed set of Spec I',(P). Then sup 2= UL, where sup {2 is the suprema of £ in
I' (P). Next,we show that sup £2e Spec I',(P). Let F, ,F, be local Scott closed in P and sup 2CF , UF,. We
claim that UQCF, or UNCF,. If not,there exist D,,D, € 2 such that D, CF, ,D, € F, and D,CF,,D,Z F,.
Since (2 is directed ,there is a D, ©{2 such that D, €D, , D, € D,. In addition, D, C F, or D, CF, since D, €
Spec I',(P)and D;CF UF,. Then D,CF, or D,CF,. We get a contradiction. The proof is completed.

Lemma 7 Let D be a directed subset of a cldepo P. Then D=sup{ {d} :d € D! € Spec I",( P). Moreo-

ver,if D is a bounded directed subset of P and b is any upper bound of D, then D= | V J D=1V ,,T Di.

Proof Assume that D is a directed set of P. Then{ {d|:d € D} is directed in Spec I',( P). Thus sup

{{d}:de D! =U{{d}:deD}| e Spec I',( P) by Proposition 2. For each d € D, we have {d} CD. Then

U{{d}:d e D} €D. Hence U{{d}:deD} CD. On the other hand, since D C { {d}:d e D}, D C

m Hence

D=sup{{d}:deD!=U{{d}:deD} eSpec I',(P).

Similarly , the case that D is bounded directed by Lemma 6 and Corollary 1.

By Proposition 2,if P is a cldcpo,then Spec I',( P)is directed under inclusion. Thus we have the following
Definition 1.

Definition 1 ILet P be a cldcpo. Spec I",(P)is called a directed completion of P.

Example 2 Let P be the ldcpo in Example 1. Clearly, P is a cldepo,and Spec I",(P)=2[0,1];Let Z be
the set of integers with the usual order. Clearly,Z is an aldcpo,and Spec I',(Z )2Z U {+w |.

Definition 2 Let P be a cldepo. For each A € Spec I',(P) ,put A* ={b e A there is an a € A such that
b<<,al.

In Definition 2, it is clear that A® CA by the definition of A ™.

Lemma 8 Let P be a cldepo. If A € Spec I',(P) ,then

(1)A™ is a directed lower set in P;(2)A=/4T=sup{m:b eA”};(3)Forall B,CeI',(P),BCC if and

only if B* CC" ;(4)(sup 2) " =U{D" .:D e 0} for each directed subset £2 of Spec I',(P);(5)A=1{a}if and
only if @ is an upper bound of A” and V JA " =a.

Proof (1)Obviously,A” is a lower set. Next,we will show that A" is directed. Let b,c € A”. We claim
that T,6N T ,cNA##J. Otherwise,A=(A-T ) (A= T ,c). Then A=A-T ,b or A=A-T ,¢ since A € Spec
I',(P). Since b,ce A" there exist a,,a, €A such that b<,a,,c<,a,. Thus a, e A= T ,b or a, e A-T ,c. We
get a contradiction. Let a e T,6N T ,¢cNA. Then there exists ad e T,6N T, ¢ such that d<,a by Lemma 3 and

Proposition 1. Thus d €A™ and d is a common upper bound for b and ec.

(2) 1t is clear that A* CA. For each a eA,we have §,aCA" by Definition 2. Then a=V | U ,a cA” by
— 3
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Lemma 6,and ACA®. Hence A=A". Therefore,A=/F=supi {b}:be A" | by Lemma 7.

(3) Follows directly from(2)and Definition 2.

(4)Let £2 be directed in Spec I",(P). ThenU { D" .D e 2} is directed in P by(1). We claim that sup 2=
U{D":Def}. In fact,

Ui{D":Def=supiid}.de U{D":De}} by Lemma 7
=sup| [d]| :deD* ,De} =sup|sup| |d] :deD" | .De )
=sup{D” :D e} by Lemma 7
=sup{D:D e} =sup 2 by(2)

For each d € (sup £2) " ,there exists a d* esup 2=U {D" ;D e} such that d<,d".

By Lemma 6, there is a bounded directed set D'C U {D” ;D e £2} such that d* < V ,j D' ,where b is an up-
per bound of D’. Then there exist d"* € D', D e {2 such that d<d"" ,and d"" € D" . Hence,de D" ,since D"
is a lower set in P. Thus(sup £2) " C U {D" :D e 2}. On the other hand,by(3),D" C(sup £2) " for each D e
0. Then U{D" :De} C(sup ). Therefore, (sup 2) "=U{D":De}.

(5)Assume that A={a|. Then U ,aCA" by Definition 2. For each x € A" | there exists a y € A such that
x<,y. By Corollary 1, there exists a bounded directed subset DC | a with an upper bound b such that y< /| D.
Hence there exists a d € D such that x <d <a. Thus « is an upper bound of A”. Moreover,a=V (j U,a<V j A"
<a. So a= \/JA*. Conversely,let a be an upper bound of A" and \/JA* =a. So A=A" = { \/JA* f=1{al by
(2)and Lemma 7.

Similar to Lemma 8(1),(2) ,we have the following corollary.
Corollary 2 Let P be an aldcpo. If A € Spec I',(P) ,then

(1)A" NK(P) is a directed lower set in P;(2)A=A" =sup{ {b] :beA”" NK(P)}.
Lemma 9 Let P be a cldepo.

(1)If <,y in P,then {x|<<{y} in Spec I",(P) ;(2)Define c:P—Spec I',(P)by c(p)= {p} for all p e

P. Then the map c is local Scott continuous and preserves the relation <, .

Proof (1) Assume that <,y in P. Let £2 be a directed set in Spec I",(P) and {y| Csup 2. Then {y| C

(sup )" =U{D" :De|by Lemma 8(2),(4). It follows that ye U {D".De{2}. Hence,by Lemma 6,
there is a bounded directed subset EC U {D" :D e} such that y< V] E,where b is an upper bound of E.

Thus there exist e € E,D € {2 such that x<<e and e € D" . Therefore x e D* ,and {x} ©D" =D. Consequently,

A<Dyl

(2) Obviously, the map ¢ is monotone. Now, it suffices to show that the map ¢ preserves the suprema of
bounded directed subset. Suppose that D is a bounded directed set in P and a = Vlj D, where p is any upper
bound of D. Then ¢(D)is a directed subset of Spec I",(P) ,and c¢(d) Cc(a)for each d € D. Thus sup ¢(D)=
suple(d):deD} Se(a). Moreover,D Csup ¢(D) ,since d € ¢(d) Ssup ¢(D)for each d € D. Then D C sup
¢(D) ,and ¢(a)=DCsup ¢(D)by Lemma 7. Therefore, c( \/pT D)=c(a)=sup ¢(D). Finally,the map ¢ pre-
serves the relation <, by(1).

Lemma 10 Let P be a cldecpo. Then X<<<Y in Spec I",( P) if and only if there are x,y € Y with x<, ¥ such

that XC {x} C{y} CV.
Proof Sufficiency. It is clear by Lemma 9(1)and Lemma 4.

Necessity. Assume that X<V in Spec I,(P). Since Y= sup{m;x € Y" | by Lemma 8(2) ,there exists an

x € Y" such that XC {x}|. Moreover,there is a y € ¥ such that x<,y by Definition 2. Hence XC {x| C{y}| CV.
4 —
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Lemma 11 Let P be a cldcpo. Then Y= 3 | :yeY" |for each Y e Spec I',(P).

Proof Assume that X<V in Spec I",( P). Then there exist y,,y, € Y with y,<,y, such that XC {y, | C

{y,} €Y by Lemma 10. For each x € X", there exists an x’ € XC |y, } such that x<,x" by Definition 2. Then,
by Corollary 1,there is a bounded directed set DC | y, such that x' <V, D, where b is an upper bound of D in
P. So,there is a d € D such that x<d and x<y,. Thus y, is an upper bound of X *. Hence V TX* eY"  since

V.leX* <y,<,y, €Y. We have | V) T X i<y } CY by Lemma 4 and Lemma 9(1). In addition,by Lemma 7
and Lemma 8(2),{V TX* f =X"=X. Then U YC { { f:yeY"}. On the other hand, it follows from Lemma
9(1)that{m;er*€CﬁY Therefore, I Y= H HyeY' .

In the following theorem we show that the directed completion of a cldepo(resp.,an aldcpo)is a continuous
(resp. ,algebraic) depo.

Theorem 1 Let P be a cldcpo(resp.,an aldcpo). Then Spec I',( P)is a continuous ( resp.,an algebraic)
depo.

Proof For each Y e Spec I',(P) ,we have Jy=| % l:yeY" | by Lemma 11. Since Y is directed in P,

{ {y} :y e Y" |is directed in Spec I',(P). Moreover,by Lemma 8(2) ,Y= sup{ {y|:ye Y | =sup Y. There-
fore,Spec I',(P) is a continuous dcpo.

Similarly, Spec I",( P)is an algebraic depo if P is an algebraic local dcpo.

Theorem 2 Let P be a cldepo. Then for any continuous depo @ and leoal Scott continuous map f: P—(Q,
there exists a unique Scott continuous map g:Spec I",( P)—(Q such that gec=f. Moreover, if f preserves the rela-
tion<, ,then g preserves the relation <.

Proof Define g:Spec I',(P)—(Q by g(X)=sup{f(x):x e X" |for every X € Spec I',(P).

Claim 1 y<,x if and only if y € {x} "

Sufficiency. Assume that y € m* Then there exists a y' € {x} such that y<<,y'by Definition 2. Hence, by
Corollary 1,there exists a bounded directed set DC | x such that y’ <V, D, where b is an upper bound of D. In

addition , there is a z € P such that y<,z <,y" by Lemma 2. So,there exists a d € D such that z<<d. Thus y<<
Z=d<x. Therefore y<,x by Lemma 4.

Necessity. Obviously,y m " ,since x € {x}.
Claim 2 goc=f.

For each x € P,we have

g(% })_ %f(y);yem*} by the definition of g
TRy < by Claim 1
=f(V J Ux) by f being a local Scott continuous map
=f(x) by P being a continuous local dcpo.
Hence gec=f.

Claim 3 The map g preserves suprema of directed sets.
Obviously, g is order preserving by the definition of g. Assume that {2 is any directed set of Spec I',(P).
Next, it suffices to show g(sup £2)=sup{g(D) :De2}. In fact,

g(sup 2)=sup|{f(d):de (sup 2) " | by the definition of g
=sup{f(d):de U{D" .Del} | by Lemma 8(4)
=sup{f(d):deD" ,Def =sup{sup{f(d):deD"}|.De}
=sup{g(D):D e} by the definition of g.

Claim 4 The map g preserves the relation < if f preserves the relation <, .
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Assume that X<<Y. Then there exist y,,y, € ¥ such that y,<,y, and XC {y,} C{y,| €Y by Lemma 10.
Thus f(y,) <f(y,) ,since f preserves the relation <<,. Moreover,g(X) Cg({y,})=goc(y,)=f(y,)<f(y,)=

gee(y)=g( 1y, 1) Sg(Y). Hence g(X)<g(Y).
Claim 5 h=g if there exists a Scott continuous map h satisfying hec=f. For each X € Spec I',(P),

h(X)=h(sup{m;xeX*}) by Lemma 8(2)

=sup{h({x}):xeX"} by h preserving suprema of directed sets
=sup{f(x):xeX”} by hoc=f
=g(X) by the definition of g.

The proof is finished.

Let CLDcpo( resp., ALDcpo) be the category of continuous( resp. ,algebraic)local depos and local Scott con-
tinuous maps preserving <, ; Let CDcpo(resp.,ADcpo) be the category of continuous(resp. ,algebraic) depos and
Scott continuous maps preserving <.

By Proposition 3.3.6"”) and Theorem 2 ,we have the following theorem.

Theorem 3 CDcpo( resp.,ADcpo)is a full reflective subcategory of CLDcpo(resp.,ALDcpo).
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