[ 1] C de Boo r. Good approx im ation by splinesw ith var iable kno ts II[M ] / / Springer Lec tureNo tes Se ries 363. Be rlin: Springer-Verlag, 1973.
[ 2] W h ite A B. On se lection of equ id istr ibuting m eshes for two-po int boundary-value prob lem s[ J]. SIAM Journal on Num erical Analysis, 1979, 16( 3): 472-502.
[ 3] H uangW, Ren Y, Russe llR D. M ov ing m esh partia l d ifferentia l equations (MMPDEs) based on the equid istribution pr inciple[ J]. SIAM Journa l on Num erical Ana lysis, 1994, 31: 709-730.
[ 4] M illerK, M ille rR N. M ov ing fin ite elem ent I[ J]. S IAM Journa l on Nume rica l Ana lys is, 1981, 18: 1019-1032.
[ 5] M illerK. M ov ing fin ite e lement II[ J]. SIAM Journa l on Num erical Ana lysis, 1981, 18: 1 033-1 057.
[ 6] Car lson N, M illerK. Design and applica tion o f a grad ient-w eighted mov ing finite code, Part I, 1- D[ J]. SIAM Journa l on Sc ientific Com puting, 1998, 19: 728-765.
[ 7] Car lson N, M illerK. Design and application of a grad ient-w eigh ted m ov ing finite code, Pa rt II, 2- D[ J]. SIAM Journa l on Sc ientific Com puting, 1998, 19: 766-798.
[ 8] M illerK. A geom etrical- m echan ica l inte rpo lation o f g rad ient-we ighted mov ing fin ite e lem en ts[ J]. SIAM Journa l on Num erica l Ana lys is, 1997, 34: 67-90.
[ 9] CaoW, H uangW, RussellR D. A m ov ing m esh m ethod based on the geom etric conservation law[ J]. S IAM Journal on Scientific Com puting, 2002, 24( 1): 118-142.