|Table of Contents|

A Moving Mesh Method Based on Variational Problem for Boundary Layer Problem(PDF)

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

Issue:
2007年02期
Page:
15-21
Research Field:
数学
Publishing date:

Info

Title:
A Moving Mesh Method Based on Variational Problem for Boundary Layer Problem
Author(s):
Li ZhengWang Shuanghu
Institute of Applied Physics and Computational Mathematics,Beijing 100088,China
Keywords:
m ov ing m esh var iationa lm ethod m on itor function Euler-Lag rang e equation
PACS:
O176
DOI:
-
Abstract:
A new m ov ing m esh m e thod is g iven in this dissertation. Key idea of our m ethod is that the m esh shou ld adapt the so lutions cha racter and have som e sm oothness. The d istribution o f the nodes is go tten by a var ia tiona l problem, w hose Eu ler-Lagrange equation is the new mov ing m esh equation. Why and how to form the new m ethod is in troduced in de tails. Num er ica l results in two-po int boundary prob lem s and boundary layer problem s are v ery encourag ing and c lear ly to show that in m any cases them ethod can con tro l them esh m o tion

References:

[ 1]  C de Boo r. Good approx im ation by splinesw ith var iable kno ts II[M ] / / Springer Lec tureNo tes Se ries 363. Be rlin: Springer-Verlag, 1973.
[ 2]  W h ite A B. On se lection of equ id istr ibuting m eshes for two-po int boundary-value prob lem s[ J]. SIAM Journal on Num erical Analysis, 1979, 16( 3): 472-502.
[ 3]  H uangW, Ren Y, Russe llR D. M ov ing m esh partia l d ifferentia l equations (MMPDEs) based on the equid istribution pr inciple[ J]. SIAM Journa l on Num erical Ana lysis, 1994, 31: 709-730.
[ 4]  M illerK, M ille rR N. M ov ing fin ite elem ent I[ J]. S IAM Journa l on Nume rica l Ana lys is, 1981, 18: 1019-1032.
[ 5]  M illerK. M ov ing fin ite e lement II[ J]. SIAM Journa l on Num erical Ana lysis, 1981, 18: 1 033-1 057.
[ 6]  Car lson N, M illerK. Design and applica tion o f a grad ient-w eighted mov ing finite code, Part I, 1- D[ J]. SIAM Journa l on Sc ientific Com puting, 1998, 19: 728-765.
[ 7]  Car lson N, M illerK. Design and application of a grad ient-w eigh ted m ov ing finite code, Pa rt II, 2- D[ J]. SIAM Journa l on Sc ientific Com puting, 1998, 19: 766-798.
[ 8]  M illerK. A geom etrical- m echan ica l inte rpo lation o f g rad ient-we ighted mov ing fin ite e lem en ts[ J]. SIAM Journa l on Num erica l Ana lys is, 1997, 34: 67-90.
[ 9]  CaoW, H uangW, RussellR D. A m ov ing m esh m ethod based on the geom etric conservation law[ J]. S IAM Journal on Scientific Com puting, 2002, 24( 1): 118-142.

Memo

Memo:
-
Last Update: 2013-05-05