|Table of Contents|

A Conjectured of Sierpinski on Triangular Numbers(PDF)

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

Issue:
2007年02期
Page:
33-36
Research Field:
数学
Publishing date:

Info

Title:
A Conjectured of Sierpinski on Triangular Numbers
Author(s):
Yang ShichunHe Bo
Department of Mathematics,ABa Teacher’s College,Sichuan Wenchuan 623000,China
Keywords:
triangular number geometric p rogression Sierp inski question Pell equation p rivitive divi sor
PACS:
O156
DOI:
-
Abstract:
The study of triangular number p romblem is very activing. Recently, Bennett p roved a conjec ture of Sierp inski on triangular numbers. In this paper, we firstly modified the mistake in reference of Bennett, then using Strömer’s theorem of the solutions of Pell equation, and a deep result of p rivitive divi sor of Bilu, Hanrot and Voutier, we p roved that there is no exist four distinct triangular numbers in geo metric p rogression, therefore we sovled the question of Sierp inski on triangular numbers

References:

[ 1 ]  Mordell L J. Diophantine Equations[M ]. London: Academic Press, 1969.
[ 2 ]  Erdös P. On a Diophantine equations[ J ]. J LondonMath Soc, 1951, 26: 176-178.
[ 3 ]  Cao Z F. On the diophantine equation x2n - Dy2 = 1 [ J ]. Proc AmerMath Soc, 1986, 98: 11-16.
[ 4 ]  Szymiczek K. L′équation uv =w2 en nombres triangulaires[ J ]. Publ InstMath, 1963, 3 (17) : 139-141.
[ 5 ]  Guy R. Unsolved Problems in Number Theory[M ]. 3 rd ed. New York: Sp ringerVerlag, 2004: 245-247.
[ 6 ]  Szymiczek K. The equation ( x2 - 1) ( y2 - 1) = ( z2 - 1) 2 [ J ]. Eureka, 1972, 35: 21-25.
[ 7 ]  BennettM A. A question of Sierp inski on triangular numbers[ J ]. Electronic J CombinatorialNumber Theory, 2005, 5 (1) :A25: 1-2.
[ 8 ]  Mei H F. Extensions of Störmer′s theorem[ J ]. J Yuzhou University, 1995, 12 (4) : 25-27.
[ 9 ]  Bilu Y, Hanrot G, Voutier PM. Existence of p rimitive divisions of Lucas and Lehmer numbers[ J ]. J Reine AngerMath,2001, 539: 75-122.
[ 10 ]  Voutier PM. Primitive divisions of Lucas and Lehmer sequences[ J ]. Math Comp, 1995, 64: 869-888.

Memo

Memo:
-
Last Update: 2013-05-05