|Table of Contents|

Asymptotic Properties of Solutions to a SIRS Epidemic Model With Diffusion(PDF)

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

Issue:
2009年03期
Page:
25-30
Research Field:
数学
Publishing date:

Info

Title:
Asymptotic Properties of Solutions to a SIRS Epidemic Model With Diffusion
Author(s):
Gan Wenzhen 1Shi Yihuan 2
1. School of Mathematics and Physics,Jiangsu Teachers University of Technology,Changzhou 213001,China
Keywords:
non linear inc ident ra te temporary immunity tim e delay reaction diffusion system asym pto tic properties
PACS:
O175.26
DOI:
-
Abstract:
The weakly coupled reaction-diffusion system describ ing a SIRS ep idem icm ode lw ith nonlinear inc ident rate is investigated. The loca l asym pto tic stab ilities of equilibr ium s are g iven by lineariza tion and e igenvalue. The asympto tic stabilities o f d isease- free equ ilibrium is investig ated using them e thod of Liapunov functions. Our resu lts show tha t the d isease-free equ ilibrium is asym ptotically stable if the contac t rate is sm a ll and the initial va lues are sm all.

References:

[ 1] KermackW O, M ckendr ick A G. Contributions to the m athema tica l theo ry of ep idem ics[ J] . Proc Roy Soc, 1927, A115:700-721.
[ 2] M ena-Lo rca J, H ethco teH W. Dynam ic mode ls o f in fec tious d iseases as regu latiors of popu lation sizes[ J] . JM ath B io,l1992, 30( 7): 693-716.
[ 3] Ande rson R M, M ayR. In fec tious Diseases o fH um en: Dynam ics and Control[M ]. Oxford: Ox ford Un iv ers ity Press, 1991:50-86.
[ 4] LiuW M, Lev ins S A, Lw asa Y. Influence of nonlinear inc idence rate upon the behav ior o f SIRS ep idem io log ical m ode ls[ J] . JM ath B io ,l 1986, 23( 2): 187-204.
[ 5] Ruan S G, W angW D. Dynam ica l behav ior o f an ep idem icm ode lw ith a non linear inc ident ra te[ J]. J D iff Equs, 2003, 188( 1): 135-163.
[ 6] Yu liy aN, Kyrychko, Konstantin Blyuss B. G lobal prope rties o f a de layed SIR m ode lw ith temporary imm un ity and non linearinc iden t rate[ J]. Non linear Ana ly sis: RWA, 2005, 6( 3): 495-507.
[ 7] Lady zenska ja O A, So lonn ikovV A, Ura l. ceva N N. Linear and quas ilinear equa tions o f parabolic type[ J]. Prov idence,R I: Am erM ath Soc, 1968: 105-219.
[ 8] Pao C V. Nonlinear Pa rabo lic and E llip tic Equations[M ]. New York: Plenum Press, 1992: 96-98.
[ 9] Pang P Y H, W angM X. Strategy and stationary pa ttern in a three- spec ies preda to r-preym ode l[ J]. J Diff Equ, 2004, 200( 2): 245-273.
[ 10] Wu J H. Theory and Applica tions o f Partia l Functiona-l Differential Equations, App liedM athem atica l Sc ience [M ] . NewYork: Springer-Verlag, 1996: 71-72.
[ 11] 王明新. 非线性抛物方程[M ]. 北京: 科学出版社, 1993: 121-122.
[ 12] B rown K J, Dunne P C, Gardne rR A. A sem ilinear pa rabo lic system ar ising in the theory of supe rconductiv ity[ J] . J D iffEqu, 1981, 40( 2): 232-252.
[ 13] 许飞, 侯燕, 林支桂. 带时滞的具有阶段结构的捕食抛物型方程组[ J]. 数学学报, 2005, 48( 6): 1 121-1 130.

Memo

Memo:
-
Last Update: 2013-04-23