[ 1] Schw e izer B, Sklar A. Probab ilisticM etric Spaces [M ]. Am sterdam: North-H o lland Pub lishers, 1983. 34 .
[ 2] Schw e izer B, Sklar A. Statistica lm etr ic spaces [ J] . Pac ific JM ath, 1960, 10: 313-334.
[ 3] Schw e izer B, Sklar A, Tho rp E. The m etr ization of statistica lm etr ic spaces [ J] . Pac ific JM ath, 1960, 10: 673-675.
[ 4] H adÑi O, Pap E. F ixed Po int Theory in ProbabilisticM etr ic Spaces [M ]. Dordrecht: K luw erA cadem ic Publishers, 2001.
[ 5] Fang J X. Comm on fixed po int theorem s o f com patible and weakly com patiblem aps inM enger spaces [ J] . Non linearAna lysis,2009, 71: 1833-1843.
[ 6] M ishra S N. Comm on fixed po ints of com patib le m appings in PM- spaces [ J]. M ath Japon ica, 1991, 36: 283-289.
[ 7] Jungck G, Rhoades B E. Fix ed po int for se t va lued functions w ithout continu ity [ J]. Indian J Pure ApplM ath, 1988, 29:227-238.
[ 8] Singh B, Ja in S. A fixed po int theo rem inM enger space through weak com pa tibility [ J]. JM a th Anal App,l 2005, 301:439-448.
[ 9] Razani A, Sh irdary azdiM. A comm on fixed po int theorem of com pa tible m aps inM eng er space [ J]. Chaos, So litons and Fracta ls, 2007, 32: 26-34.
[ 10] M enge rK. S tatistical me tr ics [ J] . Proc Nat Acad Sc iUSA, 1942, 28: 535-537.
[ 11] Sehga lV M, Bharucha-Re id A T. F ixed po ints o f contraction m appings in PM-spaces [ J]. M ath System Theory, 1972, 6:97-102.
[ 12] H adÑ?c O. Fix ed po int theorem s form ult-i va lued m app ing s in probab ilistic m etr ic spaces [ J]. M at Vesnik, 1979, 3: 125-133.
[ 13] Fang J X. Fixed po int theo rem s o f local contraction mapp inga on m enger spaces [ J] . ApplM ath& M ech, 1991, 12: 363-372.
[ 14] Fang J X. On fix ed deg ree theorem s for fuzzy m appings inM enger PM- spaces [ J]. Fuzzy Sets and Sy stem s, 2006, 157:270-285.
[ 15] G rabiecM. Fix ed po ints in fuzzy m etric spaces [ J]. Fuzzy Sets and System s, 1983, 27: 385-389.
[ 16] Jung ck G. Com pa tiblem app ing s and comm on fixed po ints [ J]. Inte rnat JM ath & M ath Sc,i 1986, 9: 771-779.