[ 1] Ansai Q, O te lliW, Schlag erD. A genera lization o f vectoria l equ ilibr ia[ J]. M athem atica lM ethods of Opera tions Research,1997, 46( 2) : 147-152.
[ 2] B ianchiM, H ad jisavvas N, Schaib le S. Vector equ ilibrium problem s w ith genera lized monotone b ifunctions[ J]. Journa l of Optim iza tion Theo ry and App lications, 1997, 92( 3): 531-546.
[ 3] B ianchiM, H adjisavvas N, Scha ib le S. Genera lized monotone bifunction and equ ilibrium prob lem s[ J]. Journal of Optim izationTheo ry and Applica tions, 1996, 90( 1): 531-546
[ 4] D ing X, Park J. Genera lized vector equ ilibrium prob lem s in genera lized convex spaces[ J]. Journa l of Optim ization Theoryand Applications, 2004, 120( 2): 327-353.
[ 5] H o rvath C, LI ina res C, C iscar J. M ax im a l elem ents and fixed po in ts for binary re la tions on topo log ica l o rdered spaces[ J].Journa l o fM athem atica l Economics,1996, 25( 3): 291-306.
[ 6] Luo Q. Ky Fan. s sec tion theo rem and its applications in topo log ical ordered spaces[ J] . AppliedM athem atics Letters, 2004,17( 10): 1 113-1 119.
[ 7] T ian G. Genera lization of FKKM theorem and the Ky Fan m in im ax inequalityw ith app lica tions tom ax im al e lem ents, price equilibrium and comp lementar ity[ J]. Jou rna l ofM a them a tica lAnalysis and Applica tions, 1992, 170( 2): 457-471.