|Table of Contents|

Upper Estimate on Multifractal Spectrum of Local Dimension for Recurrence Time(PDF)

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

Issue:
2011年01期
Page:
29-34
Research Field:
数学
Publishing date:

Info

Title:
Upper Estimate on Multifractal Spectrum of Local Dimension for Recurrence Time
Author(s):
Yan Zhenzhen1Chen Ercai2Li Lei1
1.School of Science,Nanjing University of Posts and Telecommunications,Nanjing 210003,China 2. School ofM athem at ical Sciences, Nanj ing Norm alUn iversity, Nan jing 210046, Ch ina
Keywords:
m ultifracta l ana lysis loca l d im ensions for recurrence time H ausdor ff dim ension ( q τ)-dim ension
PACS:
O211.6
DOI:
-
Abstract:
Th is paper is dedica ted to study mu ltifracta l decom po sition of loca l dim ens ion fo r Po incar?recurrence tim e. The uppe r estim ate on m ultifracta l spec trum w ith H ausdorff d im ension o f local dim ens ion for Po incar?recurrence tim e is ob tained.

References:

[ 1] H alsey T C, JensenM H, Kadano ff L, e t a .l Fracta lmeasures and the ir singular itis: the characte rization of strange sets[ J]. Phys Rev A, 1986, 34( 3): 1 141-1 151.
[ 2] Lau K S. Sel-f sim ilarity, Lp-spectrum for recurren t IFS attractors[ J]. Non linear ity, 1992, 6: 337-348.
[ 3] O lsen O. Se l-f affine mu ltifracta l S ie rpinsk i spong es in Rd [ J]. Pac ific JM a th, 1998, 183( 1) : 143-199.
[ 4] Fa lcone rK J. Techn iques in Fracta l Geom etry[M ] . Chrchester: W iley, 1997.
[ 5] Pesin Y. Dim ension Theory in Dynam ica l System [M ]. Ch icago: Un iv o f Ch icago Press, IL, 1997.
[ 6] Takens F, Verb itski E. Genera lmu ltifrac tal ana lysis of loca l entrop ies[ J]. Fundam entaM a them a ticae, 2000, 165( 2): 203- 237.
[ 7] 严珍珍, 陈二才. 局部熵的高维重分形分析[ J]. 系统科学与数学, 2008, 28( 1): 40-50.
[ 8] Yan Z Z, Chen E C. Uppe r estim a tes on the higher-dim ens iona lmu ltifracta l spectrum o f lo ca l entropy[ J]. No rtheastM ath J, 2008, 24( 6): 471-484.
[ 9] Afra im ovich V, Chazottes J, Sausso l B. Loca l d im ensions for Po incar?recurrences[ J]. E lec tron ic Research Announcem ents o fAm erM ath Soc, 2000, 6: 64-74.
[ 10] A fraim ov ich V, Chazo ttes J, Sausso l B. Po intw ise dim ensions fo r Po incar?recurrences assoc iated w ith m aps and flows[ J]. D iscrete and Continuous Dynam ical Sy stem s A, 2003, 9: 263-280.
[ 11] Yan Z Z, Chen E C. Mu ltifracta l analysis of lo ca l entropies for recurrence tim e[ J] . Chaos, So litons& Fracta ls, 2007, 33 ( 5): 1 584-1 591.
[ 12] Barre ira L, Saussol B. H ausdo rff d imension of m easure v ia Po incar?recurrence[ J] . Comm M ath Phys, 2001, 219: 443- 463.
[ 13] O lsen L. A mu ltifrac tal fo rm alism [ J]. Advances inM athema tics, 1995, 116( 1): 82-196.

Memo

Memo:
-
Last Update: 2013-04-11