[ 1] Con treras J, K luschM, K raw czyk J B. Nume rical so lutions to Nash-Cournot equilibr ia in coupled constraint e lectr ic itym arkets [ J] . IEEE T ransaction on Powe r System s, 2004, 19( 1): 195-206.
[ 2] Facchine i F, Pang J S. F in ite-Dim ensional Variationa l Inequa lities and Com plem enta rity Prob lem s[M ] . Be rlin: Spr inge rVerlag, 2003.
[ 3] 刘肇军, 刘宗谦, 冯素芬. 有限策略型博弈中的相关策略与具有合约的博弈及其均衡[ J]. 南京师大学报: 自然科学版, 2008, 31( 3) : 33-38.
[ 4] Zhang J Z, Qu B, X iu N H. Some pro jection- likem ethods fo r the generalized N ash equilib ria[ J] . Compu tational Optim ization and App lications, 2010, 45( 1): 89-109.
[ 5] Panicucc i P, PappalardoM, PassacantandoM. On solv ing generalized Nash equilib rium prob lem s v ia optim ization[ J]. Opt-i m ization Lette rs, 2009, 3( 3): 419-435.
[ 6] SunW Y, Yuan Y X. Optim ization Theory andM ethods: Nonlinear Programm ing[M ]. N ew York: Springer, 2006.
[ 7] Zhu T, Yu Z G. A sim ple proof for som e im portant properties of the pro jection m app ing [ J] . M athema tica l Inequa lities and App lications, 2004, 7( 3): 453-456.
[ 8] H an D R, Lo H K. Tw o new se l-f adaptive pro jection m e thods for var ia tiona l inequa lity prob lem s[ J]. Computers andM athem atics w ith Applications, 2002, 43( 12): 1 529-1 537.
[ 9] H e B S, H eX Z, L iu H X, et a.l Se l-f adaptive pro jec tionm e thod fo r co-coerc iv e var ia tiona l inequalities[ J]. European Journal o f Operationa lResearch, 2009, 196( 1): 43-48.