|Table of Contents|

Iterative Clustering with Local and Global Regularization(PDF)

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

Issue:
2014年03期
Page:
21-
Research Field:
计算机科学
Publishing date:

Info

Title:
Iterative Clustering with Local and Global Regularization
Author(s):
Xu XiaolongWang Shitong
School of Digital Media,Jiangnan University,Wuxi 214122,China
Keywords:
convexspectral clusteringlocal regularizationglobal regularizationiterative
PACS:
TP181
DOI:
-
Abstract:
Clustering is an efficient method of data analysis,K-means method is one of the most popular algorithms.The algorithm only works when the cluster of data is convex.Spectral clustering avoids the problems of K-means method,however,parameters settings in similarity calculation,complex calculation and storage complexity all constraint the effectiveness of spectral clustering.In this paper,Iterative clustering with local and global regularization is proposed.In this method,we conduct a cluster with a part of data,and then we add a small amount of remaining data gradually to the iterative calculation.The proposed method has the advantages of traditional spectral clustering,exploring both the local and global regularization,and achieve the effective clustering for Large-scale data by an iteration method.Experimental results on several data sets show the greater performance on the method.

References:

[1] Jain A,Dubes R.Algorithms for Clustering Data[M].NJ:Prentice-Hall,1988.
[2]Han J,Kamber M.Data Mining:Concepts and Techniques[M].San Francisco:Morgan Kaufmann Publishers,2001.
[3]Duda R O,Hart P E,Stork D G.Pattern Classication[M].USA:John Wiley and Sons,2001.
[4]He J,Lan M,Tan C L,et al.Initialization of cluster renement algorithms:a review and comparative study[C]//Proceedings of IEEE International Joint Conference on Neural Networks.United States:IEEE Computer Society,2004:297-302.
[5]Zha H,He X,Ding C,et al.Spectral relaxation for K-means clustering[C]//Dietterich T G,Becker S,Ghahramani Z.Advances in Neural Information Processing Systems.USA:The MIT Press,2001:1 057-1 064.
[6]Shi J,Malik J.Normalized cuts and image segmentation[J].IEEE Trans on Pattern Analysis and Machine Intelligence,2000,22(8):888-905.
[7]Chan P K,Schlag D F,Zien J Y.Spectral K-way ratio-cut partitioning and clustering[J].IEEE Trans Computer-Aided Design,1994,13(9):1 088-1 096.
[8]Ding C,He X,Zha H,et al.A min-max cut algorithm for graph partitioning and data clustering[C]//Proceedings of the 1st International Conference on Data Mining(ICDM).California,USA:IEEE Computer Society,2001:107-114.
[9]Belkin M,Niyogi P.Laplacian eigenmaps for dimensionality reduction and data representation[J].Neural Computation,2003,15(6):1 373-1 396.
[10]Zhou D,Bousquet O,Lal T N,et al.Learning with local and global consistency[C]//Advances in Neural Information Processing Systems.Cambrige:MIT Press,2003:321-328.
[11]Yu S X,Shi J.Multiclass spectral clustering[C]//Proceedings of the International Conference on Computer Vision.USA:IEEE,2003:313-319.
[12]Vapnik V N.The Nature of Statistical Learning Theory[M].Berlin:Springer-Verlag,1995.
[13]Bottou L,Vapnik V.Local learning algorithms[J].Neural Computation,1992,4(6):888-900.
[14]Wu M,Sch¨olkopf B.A local learning approach for clustering[C]//Advances in Neural Information Processing Systems.Germany:NIPS,2006:1 529-1 536.
[15]Golub G H,Van Loan C F.Matrix computations[C].Baltimore,MD,USA:Johns Hopkins University Press,1996:374-426.
[16]Belkin M,Niyogi P.Semi-supervised learning on riemannian manifolds[J].Machine Learning,2004:209-239.
[17]Zhu X,Lafferty J,Ghahramani Z.Semi-supervised learning:from Gaussian fields to Gaussian process[R]//Computer Science Technical Report.USA:Carnegie Mellon University,2003.
[18]Hein M,Audibert J Y,Luxburg U von.From graphs to manifolds-weak and strong pointwise consistency of graph laplacians[C]//Proceedings of the 18th Annual Conference on Learning Theory(COLT).Bertinoro,Italy:Springer,2005:470-485.
[19]Wang F, Zhang C,Li T.Clustering with local and global regularization[J].IEEE Transactions on Knowledge and Data Engineering,2009,21(12):1 665-1 678.
[20]Jiao L,Bo L,Wang L.Fast sparse approximation for least squares support vector machine[J].IEEE Transactions on Neural Networks,2007,18(3):685-697.
[21]Ng A Y,Jordan M I,Weiss Y.On spectral clustering analysis and an algorithm[C]//Proceedings of Advances in Neural Information Processing Systems.Cambridge,MA:MIT Press,2001,14:849-856.

Memo

Memo:
-
Last Update: 2014-09-30