[1] Jain A,Dubes R.Algorithms for Clustering Data[M].NJ:Prentice-Hall,1988.
[2]Han J,Kamber M.Data Mining:Concepts and Techniques[M].San Francisco:Morgan Kaufmann Publishers,2001.
[3]Duda R O,Hart P E,Stork D G.Pattern Classication[M].USA:John Wiley and Sons,2001.
[4]He J,Lan M,Tan C L,et al.Initialization of cluster renement algorithms:a review and comparative study[C]//Proceedings of IEEE International Joint Conference on Neural Networks.United States:IEEE Computer Society,2004:297-302.
[5]Zha H,He X,Ding C,et al.Spectral relaxation for K-means clustering[C]//Dietterich T G,Becker S,Ghahramani Z.Advances in Neural Information Processing Systems.USA:The MIT Press,2001:1 057-1 064.
[6]Shi J,Malik J.Normalized cuts and image segmentation[J].IEEE Trans on Pattern Analysis and Machine Intelligence,2000,22(8):888-905.
[7]Chan P K,Schlag D F,Zien J Y.Spectral K-way ratio-cut partitioning and clustering[J].IEEE Trans Computer-Aided Design,1994,13(9):1 088-1 096.
[8]Ding C,He X,Zha H,et al.A min-max cut algorithm for graph partitioning and data clustering[C]//Proceedings of the 1st International Conference on Data Mining(ICDM).California,USA:IEEE Computer Society,2001:107-114.
[9]Belkin M,Niyogi P.Laplacian eigenmaps for dimensionality reduction and data representation[J].Neural Computation,2003,15(6):1 373-1 396.
[10]Zhou D,Bousquet O,Lal T N,et al.Learning with local and global consistency[C]//Advances in Neural Information Processing Systems.Cambrige:MIT Press,2003:321-328.
[11]Yu S X,Shi J.Multiclass spectral clustering[C]//Proceedings of the International Conference on Computer Vision.USA:IEEE,2003:313-319.
[12]Vapnik V N.The Nature of Statistical Learning Theory[M].Berlin:Springer-Verlag,1995.
[13]Bottou L,Vapnik V.Local learning algorithms[J].Neural Computation,1992,4(6):888-900.
[14]Wu M,Sch¨olkopf B.A local learning approach for clustering[C]//Advances in Neural Information Processing Systems.Germany:NIPS,2006:1 529-1 536.
[15]Golub G H,Van Loan C F.Matrix computations[C].Baltimore,MD,USA:Johns Hopkins University Press,1996:374-426.
[16]Belkin M,Niyogi P.Semi-supervised learning on riemannian manifolds[J].Machine Learning,2004:209-239.
[17]Zhu X,Lafferty J,Ghahramani Z.Semi-supervised learning:from Gaussian fields to Gaussian process[R]//Computer Science Technical Report.USA:Carnegie Mellon University,2003.
[18]Hein M,Audibert J Y,Luxburg U von.From graphs to manifolds-weak and strong pointwise consistency of graph laplacians[C]//Proceedings of the 18th Annual Conference on Learning Theory(COLT).Bertinoro,Italy:Springer,2005:470-485.
[19]Wang F, Zhang C,Li T.Clustering with local and global regularization[J].IEEE Transactions on Knowledge and Data Engineering,2009,21(12):1 665-1 678.
[20]Jiao L,Bo L,Wang L.Fast sparse approximation for least squares support vector machine[J].IEEE Transactions on Neural Networks,2007,18(3):685-697.
[21]Ng A Y,Jordan M I,Weiss Y.On spectral clustering analysis and an algorithm[C]//Proceedings of Advances in Neural Information Processing Systems.Cambridge,MA:MIT Press,2001,14:849-856.