|Table of Contents|

Theoretical and Experimental Study on Contrast Agent Microbubbles Induced Difference Frequency Ultrasound with Dual-Frequency Excitation(PDF)

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

Issue:
2015年02期
Page:
30-
Research Field:
物理学
Publishing date:

Info

Title:
Theoretical and Experimental Study on Contrast Agent Microbubbles Induced Difference Frequency Ultrasound with Dual-Frequency Excitation
Author(s):
Zhang Kangning1Wang Jiawei2Ma Qingyu2
(1.College of Telecommunications and Information Engineering,Nanjing University of Posts and Telecommunications,Nanjing 210023,China) (2.School of Physics and Technology,Nanjing Normal University,Nanjing 210023,China)
Keywords:
difference-frequency ultrasoundcontrast agentsdual-frequency excitationparametric effectRunge-Kutta algorithm
PACS:
O426.1
DOI:
-
Abstract:
The ultrasound image depth can be enhanced using the Difference-frequency(DF)ultrasound generated by the parametric effect with low attenuation coefficient. In this paper,a theoretical derivation of DF signal from contrast agents with dual-frequency excitation is proposed based on the solution of the RPNNP equation,and nμmerical simulations are performed using the Runge-Kutta algorithm. The optimization of the DF generation is discussed associated with the excite pressure,frequency difference and microbubble size and the dual-frequency excitation experiments are performed for DF geration. The favorable results demonstrate that the optimized DF ultrasound can be achieved with a pressure enhancement as high as 28 dB when the difference frequency is close to the resonance frequency of the contrast agents with improved signal-to-noise ratio,which provide the basis for potential application of DF ultrasound in medical imaging.

References:

[1] Wells P N T. Ultrasound imaging[J]. Phys Med Biol,2006,51:R83-98.
[2]Westervelt PJ. Parametric acoustic array[J]. J Acoust Soc Am,1975,35:535-537.
[3]Gong X F,Zhang D,Liu J H,et al. Study of acoustic nonlinearity parameter imaging methods in reflection mode for biological tissues[J]. J Acoust Soc Am,2004,116:1 819-1 825.
[4]Chiou S Y,Forsberg F,Fox T B,et al. Comparing differential tissue harmonic imaging with tissue harmonic and fundamental gray scale imaging of the liver[J]. Ultrasound Med Phys,2007,26:1 557-1 563.
[5]马青玉,马勇,龚秀芬,等. 生物组织成像中用反相位脉冲技术提高二次谐波信噪比的研究[J]. 应用声学,2006,25(3):145-150.
[6]Fatemi M,Greenleaf J F. Ultrasound-stimulated vibro-acoustic spectrography[J]. Science,1998,280:82-85.
[7]Erpelding T N,Hollman K W,O’Donnell M. Bubble-based acoustic radiation force elasticity imaging[J]. IEEE Trans Ultrason Ferr Freq Contr,2005,52:971-979.
[8]Wang H L,Zhu X F,Gong X F,et al. Computed tomography of the acoustic nonlinearity parameter B/A for biological tissues via difference frequency wave from a parametric array in reflection mode[J]. Chin Sci Bull,2003,48(22):2 427-2 430.
[9]龚秀芬,章东. 非线性声参量成像及其在医学诊断中应用[J]. 应用声学,2005,24(4):208-215.
[10]郗晓宇,章东,龚秀芬,等. 锯齿波信号激励增强超声造影剂的次谐波信号[J]. 声学学报,2007,32(5):442-446.
[11]Gong X F,Gong Y J,Liu Z,et al. The viscoelasticity of lipid shell and the hysteresis of subharmonic in liquid containing microbubbles[J]. Chin Phys,2006,15:1 526-1 531.
[12]Fan T B,Zhang D,Zhang Z,et al. Effects of vapour bubbles on acoustic and temperature distributions of therapeutic ultrasound[J]. Chin Phys B,2008,17:3 372-3 377.
[13]Fan T B,Gong X F,Liu Z B,et al. Influence of the abdominal wall on the nonlinear propagation of focused therapeutic ultrasound[J]. Chin Phys B,2009,18:4 932-4 937.
[14]Zhang D,Gong Y J,Gong X F. Enhancement of subharmonic emission from encapsulated microbubbles by using a chirp excitation technique[J]. Phys Med Biol,2007,52:5 531-5 544.
[15]Gong X F,Gong Y J,Liu Z,et al. Theoretical and experimental study of enhanced subharmonic emission from microbubbles with chirp excitation[J]. Acta Phys Sin,2007,56:7 051-7 057.
[16]Liang B,Zhu Z M,Cheng J C. Propagation of acoustic wave in viscoelastic medium permeated with air bubbles[J]. Chin Phys,2006,15:412-421.
[17]Zhang B X,Wang W L. Reflection and refraction on the fluid-solid interface of acoustic field excited by a concave phased array[J]. Acta Phys Sin,2008,57:3 613-3 617.
[18]Qian Z W,Xiao L. Finite-amplitude vibration of a bubble in water[J]. Chin Phys B,2008,17:3 785-3 791.
[19]Phelps A D,Leighton T G. High-resolution bubble sizing through detection of the subharmonic response with a two-frequency excitation technique[J]. J Acoust Soc Am,1996,99:1 985-1 992.
[20]Newhouse V L,Shankar P M. Bubble sizing using the nonlinear mixing of two frequencies[J]. J Acoust Soc Am,1984,75:1 473-1 477.
[21]Wyczalkowski M,Szeri A J. Optimization of acoustic scattering from dual-frequency driven microbubbles at the difference frequency[J]. J Acoust Soc Am,2003,113:3 073-3 079.
[22]Wu C Y,Tsao J. The ultrasonic weak short-pulse responses of microbubbles based on a two-frequency approximation[J]. J Acoust Soc Am,2003,113:2 662-2 671.
[23]Wu C Y,Tsao J,Chou Y H. An ultrasonic microbubble semi-intermodulated imaging technique[J]. Ultrasound Med Biol,2005,31:1 199-1 210.
[24]Prosperetti A. A generalization of the Rayleigh-Plesset equation of bubble dynamics[J]. Phys Fluids,1982,25:409-410.
[25]杨德森,时洁,时胜国,等. 声波作用下的气泡非线性动力学特性影响因素及功率谱变化规律研究[J]. 声学学报,2013,38(2):114-127.
[26]Yu J F,Zhang D,Gong X F,et al. Frequency dependence of sound attenuation and phase velocity in suspensions containing encapsulated microbubbles[J]. Chin Phys Lett,2005,22(4):892-895.
[27]Gong Y J,Zhang D,Gong X F. Subharmonic and ultraharmonic emissions based on the nonlinear oscillation of encapsulated microbubbles in ultrasound contrast agents[J]. Chin Sci Bull,2005,50(18):1 975-1 978.
[28]Ma Q Y,Qiu Y Y,Huang B,et al. Difference-frequency ultrasound generation from microbubbles under dual-frequency excitation[J]. Chin Phys B,2010,19(9):094302.

Memo

Memo:
-
Last Update: 2015-06-30