|Table of Contents|

Computational Investigation of Adsorption Behaviors of Human Fibrinopeptide Segment at Different Polymer Material Surfaces(PDF)

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

Issue:
2015年02期
Page:
49-
Research Field:
化学
Publishing date:

Info

Title:
Computational Investigation of Adsorption Behaviors of Human Fibrinopeptide Segment at Different Polymer Material Surfaces
Author(s):
Wu Yun12Xu Wang3Ding Hongyan2Shao Kefeng3Zhao Bo3
(1.Department of Physical Chemistry,College of Science,China Pharmaceutical University,Nanjing 211198,China) (2.Jiangsu Provincial Key Laboratory for Interventional Medical Devices,Huaiyin Institute of Technology,Huaian 223003 China) (3.Jiangsu Key Laboratory of Biofunctional Materials,School of Chemistry and Materials Science,Nanjing Normal University,Nanjing 210023,China)
Keywords:
anticoagulative polymer materialfibrinopeptide segmentphysical adsorptionmolecular simulation
PACS:
TB34
DOI:
-
Abstract:
Since the adsorption behaviors of the peptides at material surfaces play an important role in many research fields and simulation studies can provide deep insights into more interaction details of the adsorption behaviors. A molecular simulation is performed using Materials Studio 4.4(MS 4.4)software package to investigate the physical adsorption behavior of the fibrinopeptide segment(HFG)separated from fibrinopeptide,which is the most important protein in the processes of hemeostasis and thrombosis,at three different kinds of polymeric biomaterials— polytetrafluoroethylene(PTFE),polyvinyl chloride(PVC),and Silicone Rubber(SR). The results suggest that the adsorption of HFG is weaker and weaker with the hydrophobicity increasing of the materials surfaces. The hydrophobic PTFE polymer materials show the best behavior to prevent the adsorption while the significant adsorption of HFG on the Silicon Rubber surface occur. Moreover,water also plays a promoting role to the interaction properties between the HFG and the polymer materials. The existence of water is strongly tend to take the peptide molecule away form the adsorption surface.

References:

[1] Peppas N A,Langer R. New challenges in biomaterials[J]. Science,1994,263:1 715-1 720.
[2]Courtney J M,Forbes C D. Thrombosis on foreign surfaces[J]. Br Med Bull,1994,50:966-981.
[3]Le-Clech P,Chen V,Fane T A G. Fouling in membrane bioreactors used in wastewater treatment[J]. J Membr Sci,2006,284:17-53.
[4]Dobretsov S,Dahms H U,Qian P Y. Inhibition of biofouling by marine microorganisms and their metabolites[J]. Biofouling,2006,22:43-54.
[5]Schmidt D L,Brady R F,Lam K. Contact angle hysteresis,adhesion,and marine biofouling[J]. Langmuir,2004,20:2 830-2 836.
[6]Ostuni E,Chapman R G,Holmlin R E. A survey of structure-property relationships of surfaces that resist the adsorption of proteins[J]. Langmuir,2001,17:5 605-5 620.
[7]Halter P,Yamamoto R J. New challenges in biomaterials[J]. Biomater Appl,1988,2:317-327.
[8]Ratner B D,Hoffman A S,Schoen F J. Biomaterials Science:An Introduction to Materials in Medicine[M]. 2rd ed. San Diego:Elsevier,2004.
[9]Yasuda T,Okuno T,Yasuda H. Contact angle of water on polymer surfaces[J]. Langmuir,1994,10:2 435-2 439.
[10]Mao C,Zhu A P,Qiu Y Z. Introduction of O-butyrylchitosan with a photosensitive hetero-bifunctional crosslinking reagent to silicone rubber film by radiation grafting and its blood compatibility[J]. Colloids Surf B,2003,30:299-306.
[11]Mao C,Zhao W B,Zhu A P. A photochemical method for the surface modification of poly(vinyl chloride)with O-butyrylchitosan to improve blood compatibility[J]. Process Biochem,2004,39:1 151-1 157.
[12]Skarja G A,Brash J L,Bishop P. Protein and platelet interactions with thermally denatured fibrinogen and cross-linked fibrin coated surfaces[J]. Biomaterials,1998,19:2 129-2 138.
[13]Lindon J N,Mcmanama G,Kushner L. Does the conformation of adsorbed fibrinogen dictate platelet interactions with artificial surfaces?[J]. Blood,1986,68:355-362.
[14]Cacciafesta P,Humphris A D L,Jandt K D. Human plasma fibrinogen adsorption on ultraflat titanium oxide surfaces studied with atomic force microscopy[J]. Langmuir,2000,16:775-816.
[15]Feng L,Li S,Li Y. Super-hydrophobic surfaces:from natural to artificial[J]. Adv Mater,2002,14:1 857-1 860.
[16]Wertz C F,Santore M M. Fibrinogen adsorption on hydrophilic and hydrophobic surfaces:geometrical and energetic aspects of interfacial relaxations[J]. Langmuir,2002,18:706-715.
[17]Steiner G,Tunc S,Maitz M. Conformational changes during protein adsorption. FT-IR spectroscopic imaging of adsorbed fibrinogen layers[J]. Anal Chem,2007,79:1 311-1 316.
[18]Jamadagni S N,Godawat R,Garde S. How surface wettability affects the binding,folding,and dynamics of hydrophobic polymers at interfaces[J]. Langmuir,2009,25:13 092-13 099.
[19]Li Y,Chen X,Gu N. Computational investigation of interaction between nanoparticles and membranes:hydrophobic/hydrophilic effect[J]. J Phys Chem B,2008,112:16 647-16 653.
[20]Materials Studio v.4.4. Materials Studio v.4.4[M]. San Diego:Accelrys Inc.,2007.
[21]Sun H. COMPASS:An ab initio force-field optimized for condensed-phase applications-overview with details on alkane and benzene compounds[J]. J Phys Chem B,1998,102:7 338-7 364.
[22]Senaratne W,Andruzzi L,Ober C K. Self-assembled monolayers and polymer brushesin biotechnology:current applications and future perspectives[J]. Biomacromolecules,2005,6:2 427-2 448.
[23]He Y,Hower J,Chen S. Molecular simulation studies of protein interactions with zwitterionic phosphorylcholine self-assembled monolayersinthe presence of water[J]. Langmuir,2008,24:10 358-10 364.
[24]Chapman R G,Ostuni E,Lin Y. Preparation of mixed self-assembled mono-layers(SAMs)that resist adsorption of proteins using the reaction of amines with a SAM that presents interchain carboxylic anhydride groups[J]. Langmuir,2000,16:6 927-6 936.
[25]Ulman A. An Introduction to Ultrathin Organic Thin Films:From Langmuir Blodgett to Self-Assembly[M]. San Diego:Academic Press,1991.
[26]Cˇerny V. Thermodynamical approach to the traveling salesman problem:an efficient simulation algorithm[J]. J Optim Theory Appl,1985,45:41-51.
[27]Kirkpatrick S,Gelatt C D,Vecchi M P. Optimization by simulated annealing[J]. Science,1983,220:671-680.
[28]Metropolis N,Rosenbluth A W,Rosenbluth M N. Equation of state calculations by fast computing machines[J]. J Chem Phys,1953,21:1 087-1 093.
[29]Aristilde L,Marichal C,Mie he-Brendle J. Interactions of oxytetracycline with a smectite clay:a spectroscopic study with molecular simulations[J]. Environ Sci Technol,2010,44:7 839-7 845.
[30]Khaled K F. Molecular modeling and electrochemical investigations of the corrosion inhibition of nickel using some thiosemicarbazone derivatives[J]. J Appl Electrochem,2011,41:423-433.
[31]Khaled K F. Experimental,density function theory calculations and molecular dynamics simulations to investigate the adsorption of some thiourea derivatives on iron surface in nitric acid solutions[J]. Appl Surf Sci,2010,256:6 753-6 763.
[32]Khaled K F. Electrochemical behavior of nickel in nitric acid and its corrosion inhibition using some thiosemicarbazone derivatives[J]. Electrochim Acta,2010,55:5 375-5 383.
[33]Chunsrivirot S,Trout B L. Free energy of binding of a small molecule to an amorphous polymer in a solvent[J]. Langmuir,2011,27:6 910-6 919.
[34]Kasemo B. Biological surface science[J]. Surf Sci,2002,500:656-677.
[35]Vogler E A. Structure and reactivity of water at biomaterial surfaces[J]. Adv Colloid Interface Sci,1998,74:69-117.
[36]Tanaka M; Mochizuki A. Effect of water structure on blood compatibility-thermal analysis of water in poly(meth)acrylate[J]. J Biomed Mater Res A,2003,68A:684-695.
[37]Wu C,Chen M,Guo C,Peptide-TiO2 Interaction in aqueous solution:conformational dynamics of RGD using different water models[J]. J Phys Chem B,2010,114:4 692-4 701.
[38]Baker E N,Hubbard R E. Hydrogen bonding in globular proteins[J]. Prog Biophys Mol Biol,1984,44:97-179.
[39]Sigal G B,Mrksich M,Whitesides G M. Effect of surface wettability on the adsorption of proteins and detergents[J]. J Am Chem Soc,1998,120:3 464-3 473.
[40]Gessner A,Lieske A,Paulke B R. Influence of surface charge density on protein adsorption on polymeric nanoparticles:analysis by two-dimensional electrophoresis[J]. Eur J Pharm Biopharm,2002,54:165-170.
[41]Xie H G,Li X X,Lv G J. Effect of surface wettability and charge on protein adsorption onto implantable alginate-chitosan-alginate microcapsule surfaces[J]. J Biomed Mater Res A,2010,92:1 357-1 365.

Memo

Memo:
-
Last Update: 2015-06-30