|Table of Contents|

Several Results About Existence and Uniqueness of Optimal Mapsin Transportation Problems:a Unified Scheme Proof(PDF)

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

Issue:
2015年04期
Page:
82-
Research Field:
数学
Publishing date:

Info

Title:
Several Results About Existence and Uniqueness of Optimal Mapsin Transportation Problems:a Unified Scheme Proof
Author(s):
Chen Ping
School of Mathematics and Information Technology,Jiangsu Second Normal University,Nanjing 210013,China
Keywords:
convex coneBrenier’s theoremoptimal transportation
PACS:
O174.12
DOI:
-
Abstract:
Based on measure theories and convex cones,we give a unified and concise theorem which proves existence and uniqueness of optimal transport maps. Some interested results can be seen as corollaries of this unified theorem,such as the Brenier’s theorem and some Monge’s problems with cost functions coming from far field re?ector problems and refraction problems.

References:

[1]AMBROSIO L,GIGLI N. A user’s guide to optimal transport[M]. Berlin Heidelberg:Springer,2013:1-155.
[2]VILLANI C. Optimal transportation,old and new[M]. Berlin Heidelberg:Springer,2008.
[3]BRENIER Y. Polar factorization and monotone rearrangement of vector-valued functions[J]. Communications on pure and applied mathematics,1991,44:375-417.
[4]CHAMPION T,DE PASCALE L. The monge problem in Rd[J]. Duke mathematical journal,2011,157(3):551-572.
[5]JIMENEZ C,SANTAMBROGIO F. Optimal transportation for a quadratic cost with convex constraints and applications[J]. Journal de mathématiques pures et appliquées,2012,98(1):103-113.
[6]CHEN P,JIANG F D,YANG X P. Two dimensional optimal transportation problem for a distance cost with a convex constraint[J]. ESAIM:Control,optimisation and calculus of variations,2013,19(4):1064-1075.
[7]CHEN P,JIANG F D,YANG X P. Optimal transportation in Rn for a distance cost with a convex constraint[J]. Zeitschrift füer angewandte mathematik und physik,2015,66(3):587-606.
[8]DU S Z,LI Q R. Positivity of Ma-Trudinger-Wang curvature on Riemannian surfaces[J]. Calculus of variations and partial differential equations,2014,51(3/4):495-523.
[9]WANG X J. On the design of a reflector antenna Ⅱ[J]. Calculus of variations and partial differential equations,2004,20(3):329-341.
[10]GUTIéRREZ C E,HUANG Q. The refractor problem in reshaping light beams[J]. Archive for rational mechanics and analysis,2009,193(2):423-443.

Memo

Memo:
-
Last Update: 2015-12-30