|Table of Contents|

Effect of the Non-Uniform Dzyaloshinskii-Moriya Interactionon Heat Conduction of Quantum Ising Chains(PDF)

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

Issue:
2016年04期
Page:
0-
Research Field:
·物理学·
Publishing date:

Info

Title:
Effect of the Non-Uniform Dzyaloshinskii-Moriya Interactionon Heat Conduction of Quantum Ising Chains
Author(s):
Li Wenjuan1Zhang Zhenjun2
(1.Department of Junior Education,Changsha Normal University,Changsha 410100,China)(2.College of Science,Hohai University,Nanjing 210098,China)
Keywords:
non-uniform Dzyaloshinskill-Moriya interactionheat conductionquantum spin chain
PACS:
O469
DOI:
10.3969/j.issn.1001-4616.2016.04.019
Abstract:
Basing on the Lindblad master equation,we study the effect of the staggered,random,and the aperiodic Dzyaloshinskii-Moriya(DM)on the heat conductivity of quantum Ising chains. By calculating the average energy-density profile and the average energy current,the numerical results show that the DM interaction could increase the heat conduction of Ising chains for the fixed system size with the three kinds of DM interactions above. But the scaling behaviors of energy current with increasing system size for the Ising chain with staggered,random,Finonacci DM interactions show differently. Therefore,the heat transport behavior of Ising chain could be adjusted by controlling the strength and the forms of the DM interaction.

References:

[1] DZYALOSHINSKY I. A thermodynamic theory of“Weak”ferromagnetism of antiferromagnetics[J]. J Phys Chem Solids,1958,4(4):241-245.
[2]MORIYA T. Anisotropic superexchange interaction and weak ferromagnetism[J]. Phys Rev,1960,120(1):91-98.
[3]ZHONG M,XU H,LIU X,et al. The effects of the Dzyaloshinskii-Moriya interaction on the ground-state properties of the XY Chain in a transverse field[J]. Chinese physics B. 2013,22(9):090313(1-7).
[4]MA F,LIU S,KONG X. Quantum entanglement and quantum phase transition in the the XY model with staggered Dzyaloshinskii-Moriya interaction[J]. Phys Rev A,2011,84(4):042302-042307.
[5]KARGARIAN M,JAFARI R,LANGARI A. Dzyaloshinskii-Moriya interaction and anisotropy effects on the entanglement of the Heisenberg model[J]. Phy Rev A,2009,79(4):042319-042325.
[6]蔡卓,陆文彬,刘拥军. 交错Dzyaloshinskill-Moriya相互作用对反铁磁Heisenberg链纠缠的影响[J]. 物理学报,2008,57(11):7 267-7 273.
[7]WANG X. Effects of anisotropy on thermal entanglement[J]. Physics letters A,2001,28:101-104.
[8]DIVYAMANI B G. Thermal entanglement in a two-qubit Ising chain subjected to Dzyaloshinsky—Moriya interaction[J]. Chinese physics letters,2013,30(12):120301(1-4).
[9]HU J,FANG J,QIAN LI,et al. Thermal entanglement of Ising model with Dzyaloshinskii-Moriya interaction in an inhomogeneous magnetic field[J]. Chinese journal of quantum electronics,2011,28(3):229-334.
[10]LI D,LI X,LI H,et al. Thermal entanglement in the pure Dzyaloshinskii-Moriya model with magnetic field[J]. Chinese physics letters,2015,32(5):050302(1-5).
[11]SHARMA K K,PANDEY S N. Dynamics of entanglement in qubit-qutrit with x-component of DM interaction[J]. Comm Theor Phys,2016,65(3):278-284.
[12]JAFARPOUR M,ASHRAFPOUR M. Entanglement dynamics of a two-qutrit system under DM interaction and the relevance of the initial state[J]. Quantum Inf Process,2013,12:761-772.
[13]LI W,ZHANG Z,TONG P. Effect of the Dzyaloshinskii-Moriya interaction on heat conductivity in one-dimensional quantum Ising chains[J]. The European physical journal B,2012,85(73):20798(1-6).
[14]PROSEN T. Third quantization:a general method to solve master equations for quadratic open Fermi systems[J]. New journal of physics,2008,10(4):43026(1-22).
[15]LI W,TONG P. Heat conduction in one-dimensional aperiodic quantum Ising chains[J]. Phys Rev E,2011,83(3):031128-031133.
[16]YAN Y,WU C Q,CASATI G,et al. Nonballistic heat conduction in an integrable random-exchange Ising chain studied with quantum master equations[J]. Phys Rev B,2008,77:172411-172414.
[17]SUN K,WANG C,CHEN Q. Heat transport in an open transverse-field Ising chain[J]. Europhys Lett,2010,92:24002(1-6).
[18]BüTTIKER M. Four-terminal phase-coherent conductance[J]. Phys Rev Lett,1986,57:1 761-1 764.
[19]LEPRI S,LIVI R,POLITI A. Thermal conduction in classical low-dimensional lattices[J]. Phys Rep,2003,377(1):1-80.
[20]LI B,WANG J. Anomalous heat conduction and anomalous diffusion in one-dimensional systems[J]. Phys Rev Lett,2003,91:044301-044304.
[21]BONETTO F,LEBOWITZ J L,REY B L. Fourier’s law:a challenge to theorists[M]. London:Imperial College Press,2000.

Memo

Memo:
-
Last Update: 2016-12-31