[1] DZYALOSHINSKY I. A thermodynamic theory of“Weak”ferromagnetism of antiferromagnetics[J]. J Phys Chem Solids,1958,4(4):241-245.
[2]MORIYA T. Anisotropic superexchange interaction and weak ferromagnetism[J]. Phys Rev,1960,120(1):91-98.
[3]ZHONG M,XU H,LIU X,et al. The effects of the Dzyaloshinskii-Moriya interaction on the ground-state properties of the XY Chain in a transverse field[J]. Chinese physics B. 2013,22(9):090313(1-7).
[4]MA F,LIU S,KONG X. Quantum entanglement and quantum phase transition in the the XY model with staggered Dzyaloshinskii-Moriya interaction[J]. Phys Rev A,2011,84(4):042302-042307.
[5]KARGARIAN M,JAFARI R,LANGARI A. Dzyaloshinskii-Moriya interaction and anisotropy effects on the entanglement of the Heisenberg model[J]. Phy Rev A,2009,79(4):042319-042325.
[6]蔡卓,陆文彬,刘拥军. 交错Dzyaloshinskill-Moriya相互作用对反铁磁Heisenberg链纠缠的影响[J]. 物理学报,2008,57(11):7 267-7 273.
[7]WANG X. Effects of anisotropy on thermal entanglement[J]. Physics letters A,2001,28:101-104.
[8]DIVYAMANI B G. Thermal entanglement in a two-qubit Ising chain subjected to Dzyaloshinsky—Moriya interaction[J]. Chinese physics letters,2013,30(12):120301(1-4).
[9]HU J,FANG J,QIAN LI,et al. Thermal entanglement of Ising model with Dzyaloshinskii-Moriya interaction in an inhomogeneous magnetic field[J]. Chinese journal of quantum electronics,2011,28(3):229-334.
[10]LI D,LI X,LI H,et al. Thermal entanglement in the pure Dzyaloshinskii-Moriya model with magnetic field[J]. Chinese physics letters,2015,32(5):050302(1-5).
[11]SHARMA K K,PANDEY S N. Dynamics of entanglement in qubit-qutrit with x-component of DM interaction[J]. Comm Theor Phys,2016,65(3):278-284.
[12]JAFARPOUR M,ASHRAFPOUR M. Entanglement dynamics of a two-qutrit system under DM interaction and the relevance of the initial state[J]. Quantum Inf Process,2013,12:761-772.
[13]LI W,ZHANG Z,TONG P. Effect of the Dzyaloshinskii-Moriya interaction on heat conductivity in one-dimensional quantum Ising chains[J]. The European physical journal B,2012,85(73):20798(1-6).
[14]PROSEN T. Third quantization:a general method to solve master equations for quadratic open Fermi systems[J]. New journal of physics,2008,10(4):43026(1-22).
[15]LI W,TONG P. Heat conduction in one-dimensional aperiodic quantum Ising chains[J]. Phys Rev E,2011,83(3):031128-031133.
[16]YAN Y,WU C Q,CASATI G,et al. Nonballistic heat conduction in an integrable random-exchange Ising chain studied with quantum master equations[J]. Phys Rev B,2008,77:172411-172414.
[17]SUN K,WANG C,CHEN Q. Heat transport in an open transverse-field Ising chain[J]. Europhys Lett,2010,92:24002(1-6).
[18]BüTTIKER M. Four-terminal phase-coherent conductance[J]. Phys Rev Lett,1986,57:1 761-1 764.
[19]LEPRI S,LIVI R,POLITI A. Thermal conduction in classical low-dimensional lattices[J]. Phys Rep,2003,377(1):1-80.
[20]LI B,WANG J. Anomalous heat conduction and anomalous diffusion in one-dimensional systems[J]. Phys Rev Lett,2003,91:044301-044304.
[21]BONETTO F,LEBOWITZ J L,REY B L. Fourier’s law:a challenge to theorists[M]. London:Imperial College Press,2000.