|Table of Contents|

Full Reference Color Image Quality Assessment Method via Low-level Features Combination with Extreme Learning Machine(PDF)

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

Issue:
2022年04期
Page:
91-101
Research Field:
计算机科学与技术
Publishing date:

Info

Title:
Full Reference Color Image Quality Assessment Method via Low-level Features Combination with Extreme Learning Machine
Author(s):
Ma YuemeiFu HaoLiu GuojunYang LingWei Lili
(School of Mathematics and Statistics,Ningxia University,Yinchuan 750021,China)
Keywords:
color image quality assessmentlow-level featureslocal binary patterngradientstructural contrast indexextreme learning machine
PACS:
TP391.41; TP181
DOI:
10.3969/j.issn.1001-4616.2022.04.013
Abstract:
As an image quality monitoring and evaluation tool,image quality assessment(IQA)plays an important role in various image processing systems. The ideal IQA method should be consistent with human visual system(HVS). Suppose HVS understanding an image mainly according to its low-level features,a novel Full Reference(FR)color IQA method. Firstly,four different types of low-level feature maps are extracted,namely structural contrast index(SCI),gradient,local binary pattern(LBP),and chroma,which are used to characterize different feature attributes of the image. Secondly,different feature pooling strategies are employed to process each type of features respectively,and a set of similar feature vectors are formed as the detector of image quality. Then,extreme learning machine(ELM)is used to establish regression model and map the feature vectors into an objective quality score. Finally,extensive experiments performed on five benchmark IQA databases and compared with eight state-of-the-art FR IQA metrics. The results demonstrate that the overall performance of proposed method is better than other methods,and can effectively improve the accuracy of IQA index on most of distortions.

References:

[1]WANG Z,BOVIK A C,SHEIKH H R,et al. Image quality assessment:from error visibility to structural similarity[J]. IEEE transactions on image processing,2004,13(4):600-612.
[2]JI W,WU J,SHI G,et al. Blind image quality assessment with semantic information[J]. Journal of visual communication and image representation,2019,58:195-204.
[3]SHEIKH H R,SABIR M F,BOVIK A C. A statistical evaluation of recent full reference image quality assessment algorithms[J]. IEEE transactions on image processing,2006,15(11):3440-3451.
[4]ZHANG L,ZHANG L,MOU X Q,et al. FSIM:A feature similarity index for image quality assessment[J]. IEEE transactions on image processing,2011,20(8):2378-2386.
[5]ZHANG L,SHEN Y,LI H. VSI:a visual saliency-induced index for perceptual image quality assessment[J]. IEEE transactions on image processing,2014,23(10):4270-4281.
[6]刘国军,高丽霞,陈丽奇. 广义平均的全参考型图像质量评价池化策略[J]. 光学精密工程,2017,25(3):742-748.
[7]NARWARIA M,LIN W. SVD-based quality metric for image and video using machine learning[J]. IEEE transactions on systems,man and cybernetics,part B(cybernetics),2012,42(2):347-364.
[8]LIU T J,LIN W,KUO C C J. Image quality assessment using multi-method fusion[J]. IEEE transactions on image processing,2013,22(5):1793-1807.
[9]KIM J,LEE S. Deep learning of human visual sensitivity in image quality assessment framework[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). USA:IEEE,2017.
[10]GAO F,WANG Y,LI P,et al. DeepSim:Deep similarity for image quality assessment[J]. Neurocomputing,2017,257(27):104-114.
[11]HUANG G B,ZHU Q Y,SIEW C K. Extreme learning machine:theory and applications[J]. Neurocomputing,2006,70(1-3):489-501.
[12]HUANG G B,ZHOU H,DING X,et al. Extreme learning machine for regression and multiclass classification[J]. IEEE transactions on systems,man and cybernetics,part B(cybernetics),2012,42(2):513-529.
[13]SURESH S,BABU R V,KIM H J. No-reference image quality assessment using modified extreme learning machine classifier[J]. Applied soft computing journal,2009,9(2):541-552.
[14]岳靖,刘国军,付浩. 四元数谱余量彩色图像质量评价[J]. 激光与光电子学进展,2019,56(3):31009-1-8.
[15]GEUSEBROEK J M,BOOMGAARD R V D,SMEULDERS A W M,et al. Color invariance[J]. IEEE transactions on pattern analysis and machine intelligence,2001,23(12):1338-1350.
[16]BAE S H,KIM M. A novel image quality assessment with globally and locally consilient visual quality perception[J]. IEEE transactions on image processing,2016,25(5):2392-2406.
[17]OJALA T,PIETIKAINEN M,MAENPAA T. Multire solution gray-scale and rotation invariant texture classification with local binary patterns[J]. IEEE transactions on pattern analysis and machine intelligence,2002,24(7):971-987.
[18]刘丽,谢毓湘,魏迎梅,等. 局部二进制模式方法综述[J]. 中国图象图形学报,2018,19(12):1696-1720.
[19]LIU T J,LIN W,KUO C C J. Image quality assessment using multi-method fusion[J]. IEEE Transactions on image processing,2013,22(5):1793-1807.
[20]BARTLETT P L. The sample complexity of pattern classification with neural networks:The size of the weights is more important than the size of the network[J]. IEEE transactions on information theory,2002,44(2):525-536.
[21]RAO C R. Generalized inverse of matrices and its applications[M]. New York,USA:Wiley. 1971.
[22]HOERL A E,KENNARD R W. Ridge regression:biased estimation for nonorthogonal problems[J]. Technometrics,1970,12(1):55-67.
[23]PONOMARENKO N,JIN L,LEREMEIEV O,et al. Image database TID2013:peculiarities,results and perspectives[J]. Signal processing:image communication,2015,30:55-77.
[24]PONOMARENKO N,LUKIN V,ZELENSKY A,et al. TID 2008—a database for evaluation of full-reference visual quality assessment metrics[J]. Advances of modern radio electronics,2009,10:30-45.
[25]LARSON C,CHANDLER D M. Categorical image quality(CSIQ)database 2009[OL]. http://vision. okstate.edu/csiq.
[26]NINASSI A,CALLET P L,AUTRUSSEAU F. Subjective quality assessment IVC database 2005[OL]. http://www2.irccyn.ecnantes.fr/ivcdb.
[27]HORITA Y,SHIBATA K,KAWAYOKE Y,et al. MICT:Image quality evaluation database 2000[OL]. http://mict.eng.utoyama.Ac.jp/mictdb.html.
[28]高丽霞,刘国军,张选德. 快速提升的结构相似度IQA算法[J]. 计算机辅助设计与图形学学报,2017,29(07):1314-1323.
[29]KANG L,YE P,LI Y,et al. Convolutional neural networks for no-reference image quality assessment[C]//IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Beijing:IEEE Computer Society,2014:1733-1740.

Memo

Memo:
-
Last Update: 2022-12-15