|Table of Contents|

Photoelectrochemical Detection of Sulfide Based on TiO2Nanoparticles Loaded with Cd2+(PDF)

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

Issue:
2021年03期
Page:
38-44
Research Field:
·化学·
Publishing date:

Info

Title:
Photoelectrochemical Detection of Sulfide Based on TiO2Nanoparticles Loaded with Cd2+
Author(s):
Zhou Qi1Zhu Xiaochun2Zhou Zhicheng1Liang Wei1Zhu Mengzhou1Gu Ziyang2Wang Xin2Wang Yuping3
(1.Jiangsu Electric Power Company Research Institute,Nanjing 211100,China)(2.School of Automation,Nanjing Institute of Engineering,Nanjing 211167,China)(3.School of Chemistry and Materials Science,Nanjing Normal University,Nanjing 210023,China)
Keywords:
sulfidetitanium dioxideCd2+ dopingphotoelectrochemical method
PACS:
X832,O659.2
DOI:
10.3969/j.issn.1001-4616.2021.03.007
Abstract:
Based on the interaction between Cd2+ and sulfur ion,the simple and rapid detection photoelectrochemical method for trace sulfide was studied by using Cd2+ doped nano titanium dioxide(TiO2)particles composite electrode. The prepared PEC electrodes were characterized by scanning electron and transmission electron microscopy,X-ray single crystal diffractometer,UV-vis spectrophotometer,etc. The results showed that CdS,as a sensitizer,widened the photoabsorption range of nano TiO2,effectively promoted the separation of photogenerated electron holes,and significantly enhanced the photoelectric signal of the electrode. Using current-time method,the photocurrent response value showed a linear relationship with the sulfide concentration within the range of 0.001 μmol/L to 1 000 μmol/L,and the detection limit was 0.32 nmol/L(S/N=3)under 350 W xenon lamp irradiation. The method has high sensitivity,good stability and reproducibility,which lays a foundation for the rapid determination of hydrogen sulfide gas and the miniaturization of test instrument.

References:

[1] PLUTH M,BAILEY T,HAMMERS M,et al. Natural products containing hydrogen sulfide releasing moieties[J]. Synlett,2015,26(19):2633-2643.
[2]GIULIANI D,OTTANI A,ZAFFE D,et al. Hydrogen sulfide slows down progression of experimental Alzheimer’s disease by targeting multiple pathophysiological mechanisms[J]. Neurobiology of learning and memory,2013,104:82-91.
[3]KATOCH A,KIM J H,KIM S S,et al. CuO/SnO2 mixed nanofibers for H2S detection[J]. Journal of nanoscience and nanotechnology,2015,15(11):8637-8641.
[4]ZHANG X,HU Q,XIA T F,et al. Turn-on and ratiometric luminescent sensing of hydrogen sulfide based on metal-organic frameworks[J]. ACS applied materials & interfaces,2016,47(8):32259-32265.
[5]TIAN X D,LI Z Y,LAU C,et al. Visualization of in vivo hydrogen sulfide production by a bioluminescence probe in cancer cells and nude mice[J]. Analytical chemistry,2015,87(22):11325-11331.
[6]SAFAVI A,ABI A. A selective and sensitive sensor for determination of sulfide in aquatic environment[J]. IEEE sensors journal,2015,15(6):3507-3513.
[7]DHAKSHINAMOORTHY J,PULLITHADATHIL B. New insights towards electron transport mechanism of highly efficient p-Type CuO(111)nanocuboids-based H2S gas sensor[J]. The journal of physical chemistry C,2016,120(7):4087-4096.
[8]ZHANG J,YUAN Y,XU X W,et al. Core/shell Cu@Ag nanoparticle:a versatile platform for colorimetric visualization of inorganic anions[J]. ACS applied materials & interfaces,2011,3(10):4092-4100.
[9]LI D W,QU L L,HU K,et al. Monitoring of endogenous hydrogen sulfide in living cells using surface-enhanced Raman scattering[J]. Angewandte chemie international edition,2015,54(43):12758-12761.
[10]PETRUCI J F S,CARDOSO A A. Portable and disposable paper-based fluorescent sensor for in situ gaseous hydrogen sulfide determination in near real-time[J]. Analytical chemistry,2016,88(23):11714-11719.
[11]TANG J,ZHANG Y Y,KONG B,et al. Solar-driven photoelectrochemical probing of nanodot/nanowire/cell interface[J]. Nano letters,2014,14(5):2702-2708.
[12]LI H B,LI J,ZHU Y Y,et al. Cd2+-doped amorphous TiO2 hollow spheres for robust and ultrasensitive photoelectrochemical sensing of hydrogen sulfide[J]. Analytical chemistry,2018,90(8):5496-5502.
[13]赵灵芝,常鹏飞,张小清,等. 纳米材料在H2S及硫化物光学分析检测的应用进展[J]. 化学与生物工程,2019,36(7):1-6.
[14]ZHAO L Z,CHANG P F,ZHANG X Q,et al. Application progress of nanomaterials in optical analysis of hydrogen sulfide and sul-fide[J]. Chemistry & bioengineering,2019,36(7):1-6.
[15]YUE Z,LISDAT F,PARAK W J,et al. Quantum-dot-based photoelectrochemical sensors for chemical and biological detection[J]. ACS applied materials & interfaces,2013,5(8):2800-2814.
[16]DEVADOSS A,SUDHAGAR P,TERASHIMA C,et al. Photoelectrochemical biosensors:new insights into promising photoelectrodes and signal amplification strategies[J]. Journal of photochemistry and photobiology C:photochemistry reviews,2015,24:43-63.
[17]ZHAO C Q,DING S N. Perspective on signal amplification strategies and sensing protocols in photoelectrochemical immunoassay[J]. Coordination chemistry reviews,2019,391:1-14.
[18]TU W W,WANG Z Y,DAI Z H. Selective photoelectrochemical architectures for biosensing:design,mechanism and responsibility[J]. TrAC trends in analytical chemistry,2018,105:470-483.
[19]DING L H,MA C,LI L,et al. A photoelectrochemical sensor for hydrogen sulfide in cancer cells based on the covalently and in situ grafting of CdS nanoparticles onto TiO2 nanotubes[J]. Journal of electroanalytical chemistry,2016,783:176-181.
[20]WANG W,XIE Y B,XIA C,et al. Titanium dioxide nanotube arrays modified with a nanocomposite of silver nanoparticles and reduced graphene oxide for electrochemical sensing[J]. Microchimica acta,2014,181(11-12):1325-1331.
[21]房家骅,谭秋林,刘文怡,等. CNT-SnO2复合材料的制备及甲醛气敏性的研究[J]. 科学技术与工程,2016(1):53-57.
[22]PUTTHARUGSA C,AEIMBHU A. Fabrication of highly uniform gold nanoparticles-titanium dioxide nanotube arrays for H2O2 sensing[J]. Analytical sciences,2018,34(3):311-316.
[23]YU S Y,ZHANG L,ZHU L B,et al. Bismuth-containing semiconductors for photoelectrochemical sensing and biosensing[J]. Coordination chemistry reviews,2019,393:9-20.
[24]LI H,TIAN Y,DENG Z F,et al. An in situ photoelectrochemical determination of hydrogen sulfide through generation of CdS nanoclusters onto TiO2 nanotubes[J]. Analyst,2012,137(19):4605-4609.
[25]CHANG Y S,CHOI M,BAEK M,et al. CdS/CdSe co-sensitized brookite H:TiO2 nanostructures:charge carrier dynamics and photoelectrochemical hydrogen generation[J]. Applied catalysis B:environmental,2018,225:379-385.
[26]LIN H,MAO Z,ZHOU N J,et al. Fabrication of CdS quantum dots sensitized TiO2 nanowires/nanotubes arrays and their photoelectrochemical properties[J]. SN applied sciences,2019,1(5):391-398.
[27]MACAK J M,SCHMUKI P. Anodic growth of self-organized anodic TiO2 nanotubes in viscous electrolytes[J]. Electrochimica Acta,2006,52(3):1258-1264.
[28]HU Y W,LI F H,HAN D X,et al. Simple and label-free electrochemical assay for signal-on DNA hybridization directly at undecorated graphene oxide[J]. Analytica chimica acta,2012,753:82-89.
[29]DU X J,JIANG D,DAI L M,et al. Fabricating photoelectrochemical aptasensor for selectively monitoring microcystin-LR residues in fish based on visible light-responsive BiOBr nanoflakes/N-doped graphene photoelectrode[J]. Biosensors and bioelectronics,2016,81:242-248.
[30]SUN W T,YU Y,PAN H Y,et al. CdS quantum dots sensitized TiO2 nanotube-array photoelectrodes[J]. Journal of the American Chemical Society,2008,130(4):1124-1125.
[31]ZHU Y X,WANG Y F,CHEN Z,et al. Visible light induced photocatalysis on CdS quantum dots decorated TiO2 nanotube arrays[J]. Applied catalysis A:general,2015,498:159-166.

Memo

Memo:
-
Last Update: 2021-09-15