|Table of Contents|

Static Stiffness Analysis of a Reconfigurable Stewart Parallel Robot(PDF)

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

Issue:
2022年03期
Page:
132-140
Research Field:
计算机科学与技术
Publishing date:

Info

Title:
Static Stiffness Analysis of a Reconfigurable Stewart Parallel Robot
Author(s):
Qiu Xin1You Jingjing12Ye Pengda1Wang Linkang1
(1.College of Mechanical and Electronic Engineering,Nanjing Forestry University,Nanjing 210037,China)(2.Jiangsu Key Laboratory of Precision and Micro-Manufacturing Technology,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China)
Keywords:
parallel robotreconfigurationstatic stiffnessJacobian matrixprinciple of virtual power
PACS:
TH112
DOI:
10.3969/j.issn.1001-4616.2022.03.017
Abstract:
The static stiffness characteristics of a reconfigurable Stewart parallel robot were modeled and simulated. Firstly,the structure coupling-reducing and the variable topology drive of the robot are realized by designing the triple composite hooker hinge and the prismatic joint that can transform the actuated and passive motion.Then,the velocity Jacobian matrix of the robot is derived based on the velocity basis point method,and combined with the principle of virtual power,an efficient and accurate static stiffness calculation model is derived. Finally,the static stiffness characteristics of the three reconstructed configurations are analyzed by using the statics simulation software of SolidWorks Simulation,and the results are compared with the theoretical model results.The results show that the theoretical results are consistent with the finite element results,and the maximum relative error is 18.36%. The research idea provides a theoretical basis for the structure optimization and performance analysis of the 6-DOF parallel robot.

References:

[1]STEWART D. A platform with six degrees of freedom[J]. Proceedings of the institution of mechanical engineering,1965,180(15):371-386.
[2]Wen K,DU F Z,ZHANG X Z. Algorithm and experiments of six-dimensional force/torque dynamic measurements based on a Stewart platform[J]. Chinese journal of aeronautics,2016,29(6):1840-1851.
[3]ENFERADI J,NIKROOZ R.The performance indices optimization of a symmetrical fully spherical parallel mechanism for dimensional synthesis[J]. Journal of intelligent & robotic systems,2018,90(3-4):305-321.
[4]周昌春,方跃法,叶伟,等. 6-RRS超冗余驱动飞行模拟器的性能分析[J]. 机械工程学报,2016,52(1):34-40.
[5]吴范徐齐,许蔷,刘生,等. 基于咀嚼特性的少自由度咀嚼机器人设计[J]. 机械传动,2019,43(8):52-58.
[6]尤晶晶,符周舟,李成刚,等. 并联式六维加速度传感器的解耦参数辨识及其扰动分析[J]. 振动与冲击,2019,38(1):134-141.
[7]KARPENKO A P,SAYAPIN S,HIEP D X. Dodekapod as universal intelligent structure for adaptive parallel spatial self-moving modular robots[C]//Nature-Inspired Mobile Robotics,Proceedings of the 16th International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines,Australia:2013.
[8]谢志江,董阿彬,邢淑霞,等. 3自由度恰约束支链并联机构的静刚度分析[J]. 机械设计,2018,35(8):42-47.
[9]GOSSELIN C. Stiffness mapping for parallel manipulator[J]. IEEE transactions on robotics and automation,1990,6(3):377-382.
[10]DEBLAISE D,HERNOT X,MAURINE P. A systematic analytical method for PKM stiffness matrix calculation[C]//Proceedings of the 2006 IEEE International Conference on Robotics and Automation,Orlando,FL,USA,2006:4213-4219.
[11]El-Khasawneh B S,Ferreira P M. Computation of stiffness and stiffness bounds for parallel link manipulator[J]. International journal of machine tools and manufacture,1999,39(2):321-342.
[12]汪满新,谌秋生,祖莉,等. 计及重力的3-RRS并联机构静刚度分析[J]. 农业机械学报,2018,49(11):392-402.
[13]朱伟,李寒冰,沈惠平,等. 一种平面张拉整体机构运动学、刚度及动力学分析[J]. 中国机械工程,2020,31(11):1296-1305.
[14]张东胜,许允斗,姚建涛,等. 2RPU/UPR+RP五自由度混联机器人静刚度分析[J]. 中国机械工程,2018,29(6):712-719.
[15]仇鑫,尤晶晶,王林康,等. 一种三重复合虎克铰[P]. 中国:ZL 201920682793.8,2020-02-07.
[16]仇鑫,尤晶晶,王林康,等. 一种可以转换主、从移动的运动副[P]. 中国:ZL 201920969958.X,2020-04-14.
[17]周玉林,杨龙,肖超. 新型PRRR+PURU+S球面并联人形机器人踝关节机构静刚度性能分析[J]. 中国机械工程,2018,29(5):531-538.
[18]熊万涛,李开明. 3-(2SPS)并联机床设计及刚度分析[J]. 机械传动,2019,43(3):90-94.
[19]梁诤,许勇,吕叶萍. 新型六自由度铆孔机器人刚度特性研究[J]. 轻工机械,2019,37(2):6-11.

Memo

Memo:
-
Last Update: 2022-09-15