[1]黄佩奇,王 锋,陈金如.Mortar型旋转Q_1元的瀑布型多重网格方法(英文)[J].南京师大学报(自然科学版),2007,30(04):20-27.
 Huang Peiqi,Wang Feng,Chen Jinru.Cascadic Multigrid Method for Mortar-Type Rotated Q1 Element[J].Journal of Nanjing Normal University(Natural Science Edition),2007,30(04):20-27.
点击复制

Mortar型旋转Q_1元的瀑布型多重网格方法(英文)()
分享到:

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

卷:
第30卷
期数:
2007年04期
页码:
20-27
栏目:
数学
出版日期:
2007-12-30

文章信息/Info

Title:
Cascadic Multigrid Method for Mortar-Type Rotated Q1 Element
作者:
黄佩奇1 王 锋2 陈金如2
(1. 南京林业大学应用数学系,江苏南京210037)
(2. 南京师范大学数学与计算机科学学院,江苏南京210097)
Author(s):
Huang Peiqi1Wang Feng2Chen Jinru2
1.Department of Applied Mathematics,Nanjing Forestry University,Nanjing 210037,China
2. School ofMathematics and Computer Science, Nanjing Normal University, Nanjing 210097, China
关键词:
mortar元 旋转Q1 瀑布型多重网格法
Keywords:
mortar element rotated Q1 element cascadic multigrid method
分类号:
O241.8
摘要:
展现了mortar型旋转Q1元的瀑布型多重网格方法.证明了采用共轭梯度作为光滑子的瀑布型多重网格法是最优的,而采用其它传统迭代作光滑子的瀑布型多重网格法是拟最优的.并通过数值试验验证了我们的理论结果.
Abstract:
In this paper, the cascadicmultigridmethod formortar-type rotated Q1 element is discussed. It is p roved that the cascadic conjugate gradinetmethod is op timal and the cascadic multigrid method with traditional iteration is nearly op timal. Numerical results confirm our theoretical analysis.

参考文献/References:

[ 1 ]  Rannacher R, Turek S. Simp le nonconforming quadrilateral Stokes element[ J ]. NumerMeth Part Diff Eq, 1992 (8) : 97-111.
[ 2 ]  Bernardi C, Maday Y, Patera A. A new nonconforming app roach to domain decomposition: the mortar elementmethod[C ] / /Nonlinear Differential Equations and TheirApp lications. Boston: Pitman, 1994: 13-51.
[ 3 ]  Chen J, Xu X. The mortar elementmethod for rotated Q1 element[ J ]. J ComputMath, 2002, 20: 313-324.
[ 4 ]  Xu X, Chen J. Multigrid formortar elementmethod for P1 nonconforming element[ J ]. NumerMath, 2001, 88: 381-398.
[ 5 ]  Bornemann F A, Deuflhard P. The cascadic multigrid method for ellip tic p roblems[ J ]. NumerMath, 1996, 75: 135-152.
[ 6 ]  Shi Z, Xu X. Cascadic multigrid method for ellip tic p roblems[ J ]. East2West J NumerMath, 1999, 7: 199-211.
[ 7 ]  Huang P. Multigrid methods formortar-type Qrot1 and Qrot1 /Q0 elements[D ]. Nanjing: Nanjing NormalUniversity, 2005.
[ 8 ]  Grisvard P. Ellip tic Problems in Nonsmooth Domains[M ]. Boston: Pitman Advanced Publishing Program, 1985.
[ 9 ]  Bi C, Hong D. Cascadic multigrid method for the mortar elementmethod for P1 nonconforming element[ J ]. J ComputMath,2005, 23: 425-440.
[ 10 ]  Shi Z, Xu X. Cascadic multigridmethod for the second order ellip tic p roblems[ J ]. East2West J NumerMath, 1998, 6: 309-318.
[ 11 ]  HackbuschW. Multi2GridMethods and App lications[M ]. Berlin, Heidelberg, New York: Sp ringer2Verlag, 1985.

相似文献/References:

[1]姜亚琴.一种Mortar型旋转Q1元方法(英文)[J].南京师大学报(自然科学版),2008,31(04):50.
 Jiang Yaqin.A Mortar Element Method for Rotated Q1 Element[J].Journal of Nanjing Normal University(Natural Science Edition),2008,31(04):50.

备注/Memo

备注/Memo:
Founda tion item: Supported by the NNSF (10471067) and NSF of J iangsu Province (BK2006215) .
Biography: Huang Peiqi, born in 1979, master, majored in finite element theory. E-mail: pqhuang1979@163. com
Correspond ing author: Chen J inru, born in 1964, p rofessor, doctor, majored in finite element theory. E-mail: jrchen@njnu. edu. cn
更新日期/Last Update: 2013-05-05