[1]徐丹丹,张学斌.四阶幻方的变换群[J].南京师大学报(自然科学版),2008,31(04):26-28.
 Xu Dandan,Zhang Xuebin.Transformation Group of Magic Squares of Order Four[J].Journal of Nanjing Normal University(Natural Science Edition),2008,31(04):26-28.
点击复制

四阶幻方的变换群()
分享到:

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

卷:
第31卷
期数:
2008年04期
页码:
26-28
栏目:
数学
出版日期:
2008-12-30

文章信息/Info

Title:
Transformation Group of Magic Squares of Order Four
作者:
徐丹丹;张学斌;
南京师范大学数学与计算机科学学院, 江苏南京210097
Author(s):
Xu DandanZhang Xuebin
School of Mathematics and Computer Science,Nanjing Normal University,Nanjing 210097,China
关键词:
四阶幻方 变换 变换群 翻转 旋转
Keywords:
m ag ic squares o f order four transfo rm ation transform ation group retro flex ion rota te
分类号:
O157.5
摘要:
四阶幻方共有7040个不同的形式,在8阶变换群的作用下便可得到880个基础形式.证明了存在1个32阶变换群,并将880个基础形式进一步分成220类.
Abstract:
It is w ellknown that there are 7 040 d ifferent m ag ic squares o f o rder 4, wh ich have 880 basic form s unde r the transform ation g roup of o rder 8. It is proved that there is a transform a tion group o f o rder 32, and underwh ich 880 bas ic form s can be d iv ided into 220 classes

参考文献/References:

[ 1] Ganter B, Quackenbush R. Dro ids[ J]. Anna ls o f D iscre teM athema tics, 1982, 15( 2) : 179-187.
[ 2] Bonce le t C. W ave let transfo rm based wa terw ork for d ig ita l im ages[ J]. Optics Express, 1998, 12( 1): 497-515.
[ 3] 邹建成, 李国富, 齐东旭. 广义Gray 码及其在数字图像置乱中的作用[ J]. 高校应用数学学报, 2002, 17( 3): 365-370.
[ 4] 丁玮, 齐东旭. 数字图像变换及信息伪装技术[ J]. 计算机学报, 1998, 21( 9): 838-843.
[ 5] 许芝卉. 用程序实现自然方阵构造奇数阶全对角线幻方[ J] . 雁北师范学院学报, 2003, 19( 2) : 16-18.
[ 6] 徐承绪, 卢准炜. 全对角线幻方的存在性[ J]. 南京师大学报: 自然科学版, 2004, 27( 4): 32-35.
[ 7] 丁宗智. 幻方[M ]. 南京: 东南大学出版社, 1992: 55-68.
[ 8] 张景中. 幻方及其他[M ]. 北京: 科学教育出版社, 2004: 73-75.

备注/Memo

备注/Memo:
基金项目: 国家自然科学基金( 70571087)资助项目.
通讯联系人: 张学斌, 博士, 教授, 研究方向: 组合与设计理论. E-m ail:zhangxueb in@ n jnu. edu. cn
更新日期/Last Update: 2013-05-05