[1]鞠 银,汪银乐,王美珍.凹角型区域上双曲型外问题的人工边界条件[J].南京师大学报(自然科学版),2010,33(03):7-13.
 Ju Yin,Wang Yinyue,Wang Meizhen.Exterior Hyperbolic Problems With Concave Angles[J].Journal of Nanjing Normal University(Natural Science Edition),2010,33(03):7-13.
点击复制

凹角型区域上双曲型外问题的人工边界条件()
分享到:

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

卷:
第33卷
期数:
2010年03期
页码:
7-13
栏目:
数学
出版日期:
2010-09-20

文章信息/Info

Title:
Exterior Hyperbolic Problems With Concave Angles
作者:
鞠 银1 汪银乐2 王美珍1
1. 上海电机学院数理教学部, 上海200240 2. 南京工业大学理学院, 江苏南京210009
Author(s):
Ju Yin1Wang Yinyue2Wang Meizhen1
1.Department of Mathematics and Physics,Shanghai Dianji University,Shanghai 200240,China 2. College of Sciences, Nan jing Un iversity ofTechnology, Nan jing 210009, China
关键词:
凹角区域 双曲外问题 人工边界条件 数值解
Keywords:
concave dom ain exter io r hyperbo lic problem artific ial boundary cond ition( ABC ) nume rical so lu tion
分类号:
O241.82
摘要:
研究凹角型区域上双曲型外问题的人工边界条件.利用构造法获得了圆形人工边界上精确的和近似的人工边界条件.利用新得的人工边界条件,用有限差分方法求解相应问题的数值解.最后给出数值例子以示文中所得的人工边界条件的有效性.
Abstract:
In th is paper, the artificia l bounda ry condition for the exte rio r hyperbo lic prob lem sw ith concave ang les and its num erical m ethods are studied. A c ircular artific ial bounda ry # R is first in troduced, three kinds o f equ iva lent exact and approx im ate artific ia l boundary conditions are obta ined on c ircular boundary by a constructivem e thod. Secondly, w e propose new artificial boundary cond itions to reduce the g iven prob lem a computationa l problem in a bounded dom ain, w hich is equ iva lent to the or ig ina l prob lem, and the fin ite differencem ethod is used to so lved the reduced problem. F ina lly, som e num er ica l ex amp les are presented to demonstrate the per fo rm ance of artific ia l boundary conditions.

参考文献/References:

[ 1] 杜其奎, 余德浩. 关于二维双曲型初边值问题的自然积分方程[ J]. 应用数学学报, 2001, 24( 1): 17-26.
[ 2] H an H oude, Zheng Chunx iong. Exac t nonre flecting boundary conditions fo r ex terior prob lem s o f the hyperbo lic equation[ J]. Chinese Journa l of Com putationa l Physics, 2005, 22( 2): 95-107.
[ 3] Du Q iku,i TangM inx ia. Exact and approx im ate artific ia l boundary cond itions fo r the hype rbo lic prob lem s in unbounded dom a ins[ J]. AppliedM athema tics and Com putation, 2005, 169( 1) : 585-594.
[ 4] Yu Dehao, Du Q iku.i The coup ling of natural bounda ry e lem ent and fin ite e lem en tm ethod fo r 2D hype rbo lic equations[ J]. Jou rnal of Com putationa lM athema tics, 2003, 21( 5) : 544-562.
[ 5] H an H oude, H uang Zhongy .i Exact and approx im ating boundary cond itions for the parabo lic problem s on unbounded dom a ins [ J] . Com puters andM athem atics w ith Applica tions, 2002, 44( 5 /6) : 655-666.
[ 6] H an H oude, H uang Zhongy .i A c lass o f artific ia l boundary conditions fo r heat equation in unbounded dom a ins[ J] . Compu-t ers andM athem aticsW ith Applica tions, 2002, 43( 6 /7) : 889-900.
[ 7] 刘式适, 刘式达. 特殊函数[M ]. 北京: 气象出版社, 1988.
[ 8] G radshteyn I S, Ryzh ikM. Table of Integrals, Se ries and Produc ts[M ]. New Yo rk: Academ ic Press, 1980.

备注/Memo

备注/Memo:
基金项目: 上海电机学院青年教师科研基金( 08C101 ). 通讯联系人: 鞠 银, 硕士, 讲师, 研究方向: 微分方程的数值解. E-mail:juyinxue@tom. com
更新日期/Last Update: 2013-04-08