[1]李忠.椭圆曲线标量乘法中标量的有效表示[J].南京师大学报(自然科学版),2010,33(03):135-140.
 Li Zhong,Peng Daiyuan.Efficient Scalar Representation in kP of Elliptic Curve Cryptosystems[J].Journal of Nanjing Normal University(Natural Science Edition),2010,33(03):135-140.
点击复制

椭圆曲线标量乘法中标量的有效表示()
分享到:

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

卷:
第33卷
期数:
2010年03期
页码:
135-140
栏目:
计算机科学
出版日期:
2010-09-20

文章信息/Info

Title:
Efficient Scalar Representation in kP of Elliptic Curve Cryptosystems
作者:
李忠1 2 彭代渊1
1. 西南交通大学信息科学与技术学院, 四川成都610031 2. 宜宾学院计算机与信息工程学院, 四川宜宾644000
Author(s):
Li Zhong12Peng Daiyuan1
1.School of Information Science & Technology,Southwest Jiaotong University,Chengdu 610031,China 2. School of Com puter& In form ation Eng ineering, Y ib inU n iversity, Y ib in 644000, Ch ina
关键词:
椭圆曲线密码 标量乘法 标量表示 汉明重量
Keywords:
elliptic curve cryptosy sytem sca larm ultip lication scalar representation hamm ing w eigh t
分类号:
TN918.1
摘要:
标量乘法是椭圆曲线密码(ECC)的基本运算,也是最耗时的运算,其运算效率直接决定着ECC的性能.在标量乘法运算中,标量k的表示起着至关重要的作用,其长度决定了所需倍点运算量,其汉明重量决定了所需点加运算量.本文提出了一种新的标量表示方法,与目前流行的方法相比,该表示方法具有编码方式简单,汉明重量轻等优点.使用新的标量表示方法,能有效提高ECC的实现效率,尤其对于{10}m及{10}m‖1型的标量,效率提高明显.
Abstract:
Sca lar mu ltiplica tion is the fundamenta l and tim e-consum ing ope ra tion in e lliptic curve cryptosystem s, the perform ance of the e lliptic curve cryptosysytem deeply depends on the effic iency o f sca larm ultip lication. In sca la rm ultip l-i ca tion, the sca la r ks representa tion p lays an im portant ro le, it‘ s length dec ide the number of po int addition ope rations, it’ s hamm ingw e ight dec ide the number o f po int double operations. In this paper, a new sca lar representation m ethod w as presented, it can reduce the hamm ing we ight effic iently. The ana ly sis results show that the new m ethod is m ore effic ient than ex isting sca lar representation m ethods, and is particu lar ly use fu l for the sca la r such as { 10} m and { 10} m ‖ 1.

参考文献/References:

[ 1]Lopez J, Dahab R. An ove rv iew o f e lliptic curv e cryp tog raphy[ R]. Brazi:l Institute o f Com puting, Sta teUniversity o f Com b-i nas, 2000.
[ 2]A -l Som an iT, Ibrahim M. H igh pe rfo rm ance e lliptic curv eGF( 2m ) c ryptoprocesso r secure ag ainst tim ing attacks[ J] . Internationa l Journa l of Com puter Sc ience and N etw ork Secur ity ( IJCSNS) , 2006, 6( 1B): 177-183.
[ 3]Booth A D. A signed b inarym ultip lication techn ique[ J]. Journal o fAppliedM athema tics, 1951, 4( 2): 236-240.
[ 4]Re itw iesnerG W. B inary ar ithm e tic[ C] / / Advances in Compu ters. New Yo rk: Academ ic Press, 1960( 1): 231-308.
[ 5]M o ra in F, O livos J. Speed ing up the compu tations on an e lliptic curv e using add ition- subtraction cha ins[ J]. RAIRO Theore tica l Inform a tics and App lications, 1990, 24( 6): 531-543.
[ 6]H ankerson D, M enezes A, Vanstone S. Guide to E lliptic Curve C ryptography [M ]. New York: Springer-Verlag, 2004.
[ 7]IEEE P1363-2000. Standard Specifications fo r Pub lic-Key Cryp tog raphy[ S]. New Yo rk: IEEE Standard Asso ciations, 2000
[ 8]Okey aK. Signed b inary represen tations rev is ited[ C] / / FranklinM. Advances in C rypto logy-CRYPTO 2004, Vo lum e 3152 o f LNCS. New York: Spr inge r-Ver lag, 2004: 123-139.
[ 9]Ba lasub ram aniam P, Karth ikeyan E. E lliptic curve scalar m ultiplication a lgo rithm using comp lementary recod ing [ J]. App liedM a them atics and Computation, 2007, 190: 51-56.
[ 10]So linas J A. E fficien t arithm etic on Koblitz curves[ J]. Des igns, Codes and C ryptography, 2000, 19( 2 /3): 195-249
[ 11]Av an iR M. A no te on the sliding w indow integer recod ing and its le ft- to-r ight analogue[ C] / / Proceed ing s o f SAC 2004. W ater loo: Un iversity o fW aterloo, 2004.

备注/Memo

备注/Memo:
基金项目: 四川省教育厅重点科研项目( 07ZA145) . 通讯联系人: 李忠, 博士生, 副教授, 研究方向: 密码学、信息安全. E-mail:lz8056859@ 163. com
更新日期/Last Update: 2013-04-08