[1]章雅娟,张虹.一种垃圾邮件协作过滤模型[J].南京师大学报(自然科学版),2010,33(04):139-143.
 Zhang Yajuan,Zhang Hong.A Spam Collaborative Filtering Model[J].Journal of Nanjing Normal University(Natural Science Edition),2010,33(04):139-143.
点击复制

一种垃圾邮件协作过滤模型()
分享到:

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

卷:
第33卷
期数:
2010年04期
页码:
139-143
栏目:
计算机科学
出版日期:
2010-12-20

文章信息/Info

Title:
A Spam Collaborative Filtering Model
作者:
章雅娟;张虹;
西南大学计算机与信息科学学院, 重庆400715
Author(s):
Zhang YajuanZhang Hong
Faculty of Computer and Information Science & Software,Southwest University,Chongqing 400715,China
关键词:
垃圾邮件 反垃圾邮件 协作过滤
Keywords:
spam an t-i spam collabo ra tive filter
分类号:
TP393.098
摘要:
传统垃圾邮件过滤方法大多基于单一技术,已不能有效阻止不断出现的新型垃圾邮件.在分析传统单一过滤方法的基础上,本文提出了一种垃圾邮件协作过滤模型SCF,它可以弥补单一过滤技术的缺点,发挥各技术的优势,从而有效地过滤垃圾邮件.实验结果表明,该模型具有较高的垃圾邮件过滤召回率和正确率.
Abstract:
M ost trad itiona l spam filter ing m ethods are based on sing le techno logy, so they can. t effec tive ly preven t the em erg ing new type of spam s. Afterw e have analyzed trad itional filteringm ethods based on s ing le techno logy, a spam co-l laborative filter ingm ode l SCF is proposed. The SCF model can m ake up the shortcom ing s and play the advantag es o f each techno logy. The experim enta l resu lts show tha t th is new ly deve loped SCF model has better recall and prec ision in filter ing spam s.

参考文献/References:

[ 1] Gu-H s in La,i Ch ia-M ei Chen, Ch-i Sung La ih, et a .l A co llaborative an t-i spam system [ J]. Expert System sW ith App lications, 2009, 36( 3): 6 645-6 653.
[ 2] M ehm e tA c,i C igdem I # nan, M utlu Avc .i A hyb rid class ification m ethod of k nearest ne ighbo r, Bay esian m ethods and gene tic algorithm [ J]. Expert System sW ith Applica tions, 2010, 37( 7): 5 061-5 067.
[ 3] Muhamm ad N M a rsono, M W atheq E -l Kha rash,i Fayez Geba l.i Targe ting spam contro l on m idd leboxes: Spam detection based on laye r-3 e-m a il con tent classification[ J]. Com puter Netwo rks, 2009, 53( 6): 835-848.
[ 4] 孔维华, 刘继承, 陈娟. 基于优化Na?v e Bayes的垃圾邮件过滤[ J] . 计算机安全, 2009( 1): 18-20.
[ 5] Yu Bo, Xu Zongben. A com pa rative study for conten t-based dynam ic spam classification using fourm achine learning algorithm s[ J] . Know ledge-Based System s, 2008, 21( 4): 355-362.
[ 6] 郭守团, 徐志根. 基于BP神经网络的垃圾邮件过滤器研究[ J]. 计算机安全, 2009, 12: 19-20.
[ 7] Guze lla T S, Mo ta-Santos T A, Uch? J Q, et a.l Identification o f SPAM m essages using an approach insp ired on the imm une system [ J]. B io system s, 2008, 92( 3): 215-225.
[ 8] 中国科学院计算所. 汉语词法分析系统ICTCLAS[ CP /OL] . 2010-05-15. http: / / ic tclas. org /Dow n_OpenSrc. asp
[ 9] 中国教育和科研计算机网紧急响应组. CCERT 中文邮件数据集CSDCE [ DB /OL ]. 2010-05-15. http: / /www. ccert. edu. cn / spam /sa /datase ts. htm# 4.

备注/Memo

备注/Memo:
基金项目: 中央高校基本科研业务费专项资金( XD JK2009C 018 ) . 通讯联系人: 张 虹, 副教授, 研究方向: 人工智能、视觉认知计算. E-mail:zhangh@ swu. edu. cn
更新日期/Last Update: 2013-04-08