[1]李伯权,贺伟.逼近空间的拓扑方法[J].南京师大学报(自然科学版),2011,34(01):1-5.
 Li Boquan,He Wei.Topological Approach for Proximity Spaces[J].Journal of Nanjing Normal University(Natural Science Edition),2011,34(01):1-5.
点击复制

逼近空间的拓扑方法()
分享到:

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

卷:
第34卷
期数:
2011年01期
页码:
1-5
栏目:
数学
出版日期:
2011-03-20

文章信息/Info

Title:
Topological Approach for Proximity Spaces
作者:
李伯权12 贺伟1
1. 南京师范大学数学科学学院, 江苏南京210046 2. 安徽师范大学数学计算机科学学院, 安徽芜湖241003
Author(s):
Li Boquan12He Wei1
1.School of Mathematical Sciences,Nanjing Normal University,Nanjing 210046,China 2. School ofM athem atical and Com puter S cien ces, Anhu iNorm alU n ivers ity, Wuhu 241003, China
关键词:
弱逼近空间 逼近空间 扩展的 和拓扑
Keywords:
w eak prox im ity space prox im ity space ex tensional sum topo logy
分类号:
O189.1
摘要:
逼近空间理论最早由V.A.Efremovi教授于1952年从拓扑角度建立起来,最近,Dimiter Vakarelov和Ivo Duntsch等应用该理论于空间推理.本文从格及拓扑角度来研究逼近空间的若干性质,研究了弱逼近空间以及其与正则开集簇的联系,同时研究了逼近空间的和,给出了从一簇逼近空间来构造和空间的一般方法.最后给出了构造严格(弱)预逼近空间的一种方法.
Abstract:
The theory of prox im ity spaces w as found ear ly in 1952 by professorV. A. E fremov i from topo log ica l po int o f v iew. Recen tly D im iterVakare lov and Ivo Duntsch e tc. applied th is theory to the field of QSR. In th is paper, w ema in ly investig ate som e properties o f prox im ity spaces from la ttice and topo log ica l po int of v iew. Th is paper investigate weak prox im ity space and it s re lationsh ip w ith regular open se ts, m eanwh ile th is paper investigated the sum o f prox im ity space, we g ive a gene ra l m ethod o f constructing sum space from a fam ily o f prox im ity spaces. A t last, we propo se a m e thod o f constructing o f strict( w eak) pre- prox im ity space.

参考文献/References:

[ 1] RandellD, Cohn A, Cu i Z. Com puting trans itiv ity tab les: A cha llenge for automa ted theo rem Provers[ C] / / ProcCADE 11, Sara toga Springs, NY. B erlin: Spr ing er, 1992: 786-790.
[ 2] Randell D, Cui Z, Cohn A. A spatia l log ic based on reg ions and connection[ C ] / / Pro c 3rd Inte rna tiona l Con ference on Know ledge Representation and Reasoning. Lo s A ltos: Mo rgan Kaufmann, 1992: 165-176.
[ 3] D?ntsch I, W angH, M cC loskey S. A relation-a lgebraic approach to the reg ion connection ca lcu lus[ J]. Theoretica l Com pu-t er Science, 2001, 255( 1): 63-83.
[ 4] D?ntsch I, W ang H, M cC loskey S. Relation a lgebra in qua lita tive spatial reasoning[ J]. Fundam entaM athem aticae, 1999, 39( 3): 229-248.
[ 5] Na impa lly S A, W arrack B D. Prox im ity Spaces[M ]. Cambr idge: Cambr idge Un iversity Press, 1970.
[ 6] Vakare lov D, Dim ov G, D?ntsch D, et a.l A prox im ity approach to some reg ion-based theo ries of space[ J]. Journa l of Applied Non-c lassica l Log ics, 2002, 12( 3 /4): 527-529.
[ 7] Vaka re lov D, D?ntsch D, Bennett B. A no te on connection prox im ity spaces and connection based m ereo logy[ C] / / Proc 2nd Internationa l Con ference on Form a lOnto logy in Inform ation Sy stem s ( FOIS. 01). New Yo rk: ACM, 2001: 139-150.
[ 8] D?ntsch I, W inte rH. A representa tion theo rem for Boo lean contact a lg ebras[ J]. Theoretica l Com puter Sc ience, 2005, 347 ( 3): 498-512.
[ 9] Roeper P. Reg ion-based topology[ J]. Journal of Ph ilo sophica lLog ic, 1997, 26( 3): 251-309.
[ 10] S imons P Parts. A Study in Ontology[M ]. Oxford: C larendon Press, 1987.
[ 11] Enge lk ing R. Genera lTopo logy [M ]. W arszawa: PWN, 1977.

备注/Memo

备注/Memo:
基金项目: 国家自然科学基金( 10731050) . 通讯联系人: 李伯权, 博士研究生, 讲师, 研究方向: 空间推理. E-mail:lbq7880@ mail.ahnu. edu. cn
更新日期/Last Update: 2013-04-11