[1]姜亚琴.一类Mortar型旋转Q_1元的多重网格方法[J].南京师大学报(自然科学版),2011,34(02):1-9.
 Jiang Yaqin.Multigrid for a Kind of Mortar-Type Rotated Q1 Element[J].Journal of Nanjing Normal University(Natural Science Edition),2011,34(02):1-9.
点击复制

一类Mortar型旋转Q_1元的多重网格方法()
分享到:

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

卷:
第34卷
期数:
2011年02期
页码:
1-9
栏目:
数学
出版日期:
2011-06-20

文章信息/Info

Title:
Multigrid for a Kind of Mortar-Type Rotated Q1 Element
作者:
姜亚琴1 2
( 1. 南京师范大学数学科学学院, 江苏南京210046) ( 2. 南京邮电大学理学院, 江苏南京210046)
Author(s):
Jiang Yaqin12
1.School of Mathematical Sciences,Nanjing Normal University,Nanjing 210046,China
关键词:
mo rtar有限元 旋转Q1 元 多重网格
Keywords:
mo rtar fin ite e lement rotated Q1 elem ent mu ltig rid
分类号:
O241.82
摘要:
研究了一种mortar型旋转Q1元的多重网格方法,证明了W循环多重网格算法的最优收敛性,即收敛率与网格层数和尺寸无关,数值仿真验证了理论分析.
Abstract:
In th is paper, we study a mu ltigr id m ethod for a k ind o fm ortar- type rotated Q1 elem ent. It is proved that the conv ergence o f the W-cyc le mu ltig rid is optima ,l .i e. , the convergence rate is independent of the gr id leve ls and size. Num er ica l experim ents are presen ted to confirm ou r theoretica l results.

参考文献/References:

[ 1] Rannacher R, Turek S. S im ple nonconform ing quadrila tera l Stokes elem ent[ J]. Num erM ath Partial D iff Equations, 1992, 8 ( 2): 97-111.
[ 2] A rbogast T, Chen Z X. On the im plem entation of m ixed m e thods as nonconform ingm ethods for second o rder elliptic problem [ J] . M ath Comp, 1995, 211( 64): 943-971.
[ 3] Chen J R, H uang P Q. Ana ly sis o fm ortar-typeQ ro t 1 /Q0 elem ent and m ultig rid me thods for the incomppressib le S tokes problem [ J] . App lNum erM ath, 2007, 57( 5): 562-579.
[ 4] W ang F, Chen J, XuW, et a .l An add itive Schwarz preconditioner for them ortar- type rotated Q1 FEM for e lliptic prob lem s w ith d iscontinuous coeffic ients[ J] . App lNum erM ath, 2009, 59( 7): 1 657-1 667.
[ 5] Chen J R, Xu X J. Them ortar e lem ent m ethod fo rRota ted Q1 e lem ent[ J]. J Com pM aths, 2002, 20( 3): 313-324.
[ 6] Be lgacem F B, M aday Y. Them orta r e lem ent fo r three d im ensiona l finite e lem ent[ J] . RAIRO Num erAna,l 1997, 31( 2): 289-309.
[ 7] M a rc inkow ski L. Them ortar e lem ent m ethod w ith loca lly nonconform ing e lement[ J]. B IT, 1999, 39( 4): 716-739.
[ 8] B iC J, L i L K. M ultigr id for the mo rtar e lem en tm ethod w ith lo ca lly P1 nonconform ing elem ent[ J]. Num erM ath, 2003, 12 ( 2): 193-204.
[ 9] Jiang Y Q. A m orta r e lem ent me thod for ro tated Q1 e lem ent[ J]. J Nan jing No rm al Un iv ers ity: Natura l Sc ience Ed ition, 2008, 31( 4): 50-55.
[ 10] C iarlet P G. The Fin ite E lem entM ethod for E llip tic Prob lem [M ]. New York: North-H o lland, 1978.
[ 11] Chen Z X, O swa ld P. M u ltigr id and m ultileve lm ethods fo r nonconform ing Q1 elem ent[ J]. M ath Com p, 1998, 222( 67): 667-693.
[ 12] K loucek P, Li B, Lusk inM. Ana lysis o f a class o f noncon fo rm ing fin ite elem ent for crystalline m icrostructure[ J]. M a th Comp, 1996, 215( 65): 1 111-1 135.
[ 13] B ramb le JH, Pasc iak J E, Xu J. The ana lysis o fm ultig rid a lgor ithm w ith nonnested spaces and non inhe rited quadratic form [ J]. M ath Com p, 1991, 193( 56): 1-34.

备注/Memo

备注/Memo:
基金项目: 国家自然科学基金( 11071124) . 通讯联系人: 姜亚琴, 博士, 研究方向: 有限元. E-mail: yqjiangnj@ 163. com
更新日期/Last Update: 2011-06-15