[1]王琛玮,黄萍.伯克霍夫平均的压谱(英文)[J].南京师大学报(自然科学版),2012,35(02):8-15.
 Wang Chenwei,Huang Ping.Pressure Spectrum for Birkhoff Averages[J].Journal of Nanjing Normal University(Natural Science Edition),2012,35(02):8-15.
点击复制

伯克霍夫平均的压谱(英文)()
分享到:

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

卷:
第35卷
期数:
2012年02期
页码:
8-15
栏目:
数学
出版日期:
2012-06-20

文章信息/Info

Title:
Pressure Spectrum for Birkhoff Averages
作者:
王琛玮1黄萍2
( 1. 南京师范大学数学科学学院,江苏南京210046) ( 2. 解放军理工大学理学院,江苏南京211101)
Author(s):
Wang Chenwei1Huang Ping2
1.School of Mathematical Sciences,Nanjing Normal University,Nanjing 210046,China
关键词:
重分形伯克霍夫
Keywords:
multifractalspectrumBirkhoffpressure
分类号:
O174
摘要:
Legendre变换的作用是将一个独立参变量函数转化为一个新的独立参变量函数.本文证明了在热力学形式中压谱可以由函数T:R→R的Legendre变换所获得.所考虑的函数T为连续可微.用这种方法我们将重分形的问题转化为热力学问题,这些结果对更广一类的可测函数仍成立,包含了(而不仅限于)连续函数.
Abstract:
The strategy behind the use of Legendre transforms is to shift,from a function with one of its parameters an independent variable,to a new function with its dependence on a new variable. In this paper,we show that pressure spectra may be obtained as Legendre transforms of functions T: R→R arising in the thermodynamic formalism. The primary hypothesis we require is that the functions T be continuously differentiable. In this way we make rigorous the general paradigm of reducing questions regarding the multifractal formalism to questions regarding the thermodynamic formalism. These results hold for a broad class of measurable potentials,which includes ( but is not limited to) continuous functions.

参考文献/References:

[1] Halsey T,Jensen M,Kadanoff L,et al. Fractal measures and their singularities: the characterization of strange sets[J]. Phys Rev A,1986,33( 2) : 1 141-1 151.
[2] Barreira L,Pesion Y,Schmeling J. Dimension and product structure of hyperbolic measures[J]. Ann of Math,1999,149 ( 3) : 755-783.
[3] Brin M,Katok A. On Local Entropy[M]/ / Geometric Dynamics. Berlin: Springer-Verlag,1983: 30-38.
[4] Bowen R. Topological entropy for non-compact sets[J]. Trans Amer Math Soc,1973,49: 125-136.
[5] Barreira L,Pesin Y,Schmeling J. On a general concept of multifractality: Multifractal spectra for dimensions,entropies, and lyapunov exponents. Multifractal rigidity[J]. Chaos,1997,7( 1) : 27-38.
[6] Takens F,Verbitski E. Multifractal analysis of local entropies for expansive homeomorphisms with specification[J]. Comm Math Phys,1999,203: 593-612.[7] Climenhaga V. Multifractal formalism devived from thermodynamics for general dynamical systems[J]. Electron Res Announc Math Sci,2010,17: 1-11.
[8] Pesin Y. Dimension Theory in Dynamical Systems,Contemporary Views and Applications[M]. Chicago: University of Chicago Press,1998.
[9] Climenhaga V. Bowen’s equation in the non-uniform setting[J]. Ergoclic Theory Dynam Systems,2011,31( 4) : 1 163- 1 182.

相似文献/References:

[1]江正仙,黄文华.一类非C2扰动泛函的Duffing方程组边值问题解的研究[J].南京师大学报(自然科学版),2012,35(03):25.
 Jiang Zhengxian,Huang Wenhua.Study on the Solutions of the Boundary Value Problems of a Class of Duffing Systems With Non-C2 Perturbation Functional[J].Journal of Nanjing Normal University(Natural Science Edition),2012,35(02):25.
[2]任庆军.关于图的拟拉普拉斯谱的注记[J].南京师大学报(自然科学版),2001,24(02):23.
 Ren Qingjun.Note the Quasi-Laplacian Spectra of Graphs[J].Journal of Nanjing Normal University(Natural Science Edition),2001,24(02):23.

备注/Memo

备注/Memo:
Foundation item: Supported by the National Natural Science Foundation of China( 10971100) .
 Corresponding author: Wang Chenwei,doctor,majored in dynamical system. E-mail: chenweiwang01@163. com
更新日期/Last Update: 2013-03-11