[1]郭中凯,王文婷,李自珍.具有脉冲免疫接种的SEIRS传染病模型分析[J].南京师大学报(自然科学版),2013,36(02):20-26.
 Guo Zhongkai,Wang Wenting,Li Zizhen.Dynamical Analysis of SEIRS Epidemic Model with Pulse Vaccination[J].Journal of Nanjing Normal University(Natural Science Edition),2013,36(02):20-26.
点击复制

具有脉冲免疫接种的SEIRS传染病模型分析()
分享到:

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

卷:
第36卷
期数:
2013年02期
页码:
20-26
栏目:
数学
出版日期:
2013-06-30

文章信息/Info

Title:
Dynamical Analysis of SEIRS Epidemic Model with Pulse Vaccination
文章编号:
1001-4616(2013)02-0020-07
作者:
郭中凯1王文婷2李自珍3
1.兰州理工大学技术工程学院,甘肃 兰州 730050
2.西北民族大学数学与计算机科学学院,甘肃 兰州 730030
3.兰州大学干旱与草地农业生态教育部重点实验室,甘肃 兰州 730000
Author(s):
Guo Zhongkai1Wang Wenting2Li Zizhen3
1.School of Technology and Engineering,Lanzhou University of Science and Technology,Lanzhou 730050,China
2.School of Mathematics and Computer Science,Northwest University for Nationalities,Lanzhou 730030,China
3.Key Laboratory of Arid and Grassland Agroecology of the Ministry of Education,Lanzhou University,Lanzhou 730000,China
关键词:
SEIRS模型全局渐近稳定数值模拟传染病
Keywords:
SEIRS modelglobally asymptotical stabilitynumerical simulationepidemic
分类号:
O175.13; Q141
文献标志码:
A
摘要:
研究具有一般Logistic死亡率和标准传染率的SEIRS传染病模型的动力学行为.利用Floquet乘子理论和脉冲微分系统比较定理,证明了无病周期解的存在性和全局渐近稳定性,获得临界值τ000; 并通过Matlab数值模拟的方法发现当τ>τ00或θ<θ0时会形成地方病.
Abstract:
The dynamical behavior of SEIRS epidemic model with generalized Logistic death and standard contact rate is investigated in this paper.Based on Floquet theory and comparison theorem of impulsive differential equation,the existence and globally asymptotical stability of infection free periodic solution are examined,then the critical value τ000 are obtained.Finally,numerical simulation reveals that the disease will become endemic when τ>τ0,θ<θ00.

参考文献/References:

[1] Venturio E.The influence of disease on Lotka-Volterra system[J].Rlockmount J Math,1994,24(1):389-402.
[2]Chattopadhyay J,Arino O.A predator-prey model with disease in the prey[J].Nonlinear Anal,1999,36(2):749-766.
[3]Xiao Y,Chen L.Analysis of a three species eco-epidemiological model[J].Math Appl,2001,258(2):733-754.
[4]郭中凯,李文龙,程雷虎,等.食者有病的生态流行病模型的定性分析[J].兰州大学学报:自然科学版,2009,45(3):117-121.
[5]赵文才,孟新柱.一类具有Logistic死亡率的脉冲免疫接种SIRS传染病模型[J].吉林大学学报:理学版,2009,47(6):1 165-1 171.
[6]Meng X.Global dynamical behaviors for an SIR epidemic model with time delay and pulse vaccination[J].Taiwanese Journal of Mathematics,2008,12(5):1 107-1 122.
[7]Meng X.The dynamics of a new SIR epidemic model concerning pulse vaccination strategy[J].Applied Mathematics and Computation,2008,197(2):582-597.
[8]庞国萍,陶凤梅,陈兰荪,等.具有饱和传染率的脉冲免疫接种SIRS模型分析[J].大连理工大学学报,2007,47(3):460-464.
[9]高淑京,滕志东.一类具有饱和传染力和常数输入的SRIS脉冲接种模型研究[J].生物数学学报,2008,23(2):209-217.
[10]D’onoi’rio A.Stability propertise of pulse vaccination strategy in SEIR epidemic model[J].Mathematical Biosciences,2002,179(1):57-72.
[11]傅希林.脉冲微分系统引论[M].北京:科学出版社,2005.
[12]石瑞青,原存德.按Logistic增长且具有连续预防接种和潜伏期密度依赖的SEIRS流行病模型[J].山西师范大学学报:自然科学版,2005,19(2):1-5.

相似文献/References:

[1]方玲玲,齐龙兴.一类SEIRS模型稳定性分析(英文)[J].南京师大学报(自然科学版),2013,36(03):21.
 Fang Lingling,Qi Longxing.The Stability Analysis of an SEIRS Model[J].Journal of Nanjing Normal University(Natural Science Edition),2013,36(02):21.

备注/Memo

备注/Memo:
收稿日期:2012-09-15.
基金项目:国家自然科学基金(30970478、30970491)、中央高校基本科研业务费专项资金(zyz2011075).
通讯联系人:郭中凯,硕士,研究方向:数学生态学.E-mail:guozhongkai2007@sohu.com
更新日期/Last Update: 2013-06-30