[1]谈雪媛.关于M矩阵的线性系统一个新的AOR预处理方法(英文)[J].南京师大学报(自然科学版),2014,37(04):7.
 Tan Xueyuan.A New Preconditioned AOR Iterative Method forLinear System with M-Matrices[J].Journal of Nanjing Normal University(Natural Science Edition),2014,37(04):7.
点击复制

关于M矩阵的线性系统一个新的AOR预处理方法(英文)()
分享到:

《南京师大学报(自然科学版)》[ISSN:1001-4616/CN:32-1239/N]

卷:
第37卷
期数:
2014年04期
页码:
7
栏目:
数学
出版日期:
2014-12-31

文章信息/Info

Title:
A New Preconditioned AOR Iterative Method forLinear System with M-Matrices
作者:
谈雪媛
南京师范大学数学科学学院,江苏省大规模系统数值模拟重点实验室,南京 210023
Author(s):
Tan Xueyuan
Jiangsu Key Laboratory for NSLSCS,School of Mathematical Sciences,Nanjing Normal University,Nanjing 210023,China
关键词:
线性系统AOR迭代方法预处理子M-矩阵
Keywords:
linear systemAOR iterative methodpreconditionerM-matrix
分类号:
O241.6
文献标志码:
A
摘要:
本文研究M矩阵的预处理AOR方法,并给出新的预处理子I+Sα+SM+Sδ.新的预处理子是基于系数矩阵A的上三角部分绝对值最大元素,次对角元素以及最后一列元素构建.我们证明此法将加速AOR迭代速率,并通过与其他三个预处理子的比较说明新的预处理子更有效.数值例子验证了此预处理方法的有效性.
Abstract:
The purpose of this paper is to investigate the preconditioned AOR method with a new preconditioner denoted as I+Sα+SM+Sδ for M-matrix.The new preconditioner is constructed by considering the largest absolute value of the upper triangular part,the secondary diagonal and the last column of the coefficient matrix A.We prove that the rate of the AOR iterative method can be accelerated,and give the comparison with other three preconditioners to show the new preconditioner is more effective.Numerical example demonstrates the effectiveness of this preconditioning scheme.

参考文献/References:

[1] Hadjidimos A.Accelerated overrelaxation method[J].Math Comput,1978,32:149-157.
[2]Saad Y.Iterative Methods for Sparse Linear Systems[M].Boston:PWS Publishing Company,1996:95-102.
[3]Gunawardena A D,Jain S K,Snyder L.Modified iterative methods for consistent linear systems[J].Linear Algebra Appl,1991,154/156:123-143.
[4]Kohno T,Kotakemori H,Niki H.Improving the modified gauss-seidel method for Z-matrix[J].Linear Algebra Appl,1997,267:113-123.
[5]Wu M,Wang L,Song Y.Preconditioned AOR iterative method for linear system[J].Appl Numer Math,2007,57:672-685.
[6]Kotakemori H,Harada K,Morimoto M,et al.A comparison theorem for the iterative method with the preconditoner I+Sm[J].J Comput Appl Math,2002,145:373-378.[7]Morimoto M,Harada K,Sakakihara M,et al.The gauss-seidel iterative method with the preconditioned matrix I+S+Sm[J].Japan J Indust Appl Math,2004,21:25-34.
[8]Berman A,Plemmons R J.Nonnegaitve Matrices in the Mathematical Sciences[M].New York:Academic Press,1979:132-156.
[9]Varga R S.Matrix Iterative Analysis[M].2nd ed.Berlin:Springer-Verlag,2000:35-38.
[10]Wang L,Song Y.Preconditioned AOR iterative methods for M-matrices[J].J Comput Appl Math,2009,226:114-124.

备注/Memo

备注/Memo:
Received data:2014-04-15.
Foundation item:Supported by the Natural Science Foundation of China(2010101GZ30005),Jiangsu Innovation Fund for Doctor of Science(CX07B-027z).
Corresponding author:Tan Xueyuan,lecturer,majored in numerical linear algebra.E-mail:tanxueyuan@njnu.edu.cn
更新日期/Last Update: 2014-12-31